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We present an algorithm for a pair of pursuers, each with one flashlight, searching for an
unpredictable, moving target in a 2D environment (simple polygon). Given a polygon
with n edges and m concave regions, the algorithm decides in time O(n2 + nm2 + m4)
whether the polygon can be cleared by the two 1-searchers, and if so, constructs a search
schedule. The pursuers are allowed to move on the boundary and in the interior of the
polygon. They are not required to maintain mutual visibility throughout the pursuit.
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1. Introduction

Consider the following scenario: in a (dark, doorless) polygonal region there are

three moving objects (represented as points). Two of them, called the pursuers

(also known as 1-searchers), have the task to find the third, called the evader.

The evader can move arbitrarily fast, and his movements are unpredictable by the

pursuers. Each pursuer is equipped with a flashlight and can see the evader only

along the illuminated line segment emitted by the flashlight. The pursuers have

perfect knowledge about each other’s location. They plan their moves in cooperation

∗An earlier version of this paper appeared at the 2002 IEEE International Conference on Robotics
and Automation (ICRA’2002).
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and are not required to maintain mutual visibility at all times. The pursuers win

if they illuminate the evader with a flashlight. If there is a movement strategy of

the pursuers whereby they win regardless of the strategy employed by the evader,

we say that the polygon can be cleared by two 1-searchers.

The scenario above is a typical problem in pursuit-evasion, a field of continued

interest in both robotics and computational geometry. The basic task in pursuit-

evasion is to compute motion strategies for one or more pursuers to guarantee that

unpredictable evaders will be detected. A key difficulty which makes the problem

more challenging than basic exploration is that the evaders can sneak back to

places already explored by the pursuers. Efficient algorithms that compute these

strategies can be embedded in a variety of robotics systems to locate other robots

and people. They can aid mobile surveillance systems that detect intruders using

sonars, lasers, or cameras. Mobile robots can be used by special forces in high-risk

military operations to systematically search a building in enemy territory before it

is declared safe for entry.

In this paper we present an algorithm which, given a polygon with n edges and

m concave regions, decides in time O(n2 +nm2 +m4) whether it can be cleared by

the two 1-searchers, and if so, constructs a search schedule.

Note that for some polygons m = Θ(n), so the overall worst case running time

of our algorithm is O(n4), if expressed in terms of n alone. Despite the fact that it

is possible to design a somewhat simpler algorithm which runs in time O(n4), we

have opted for an algorithm whose complexity depends explicitly on the number of

concave regions m. The reason for this choice is that for most environments that

arise in practice, the number of concave regions is much smaller than n and in these

cases our algorithm performs much better than O(n4).

To make the motivation clearer, suppose that the actual environment is curved,1

and a polygonal approximation is constructed. As the approximation quality is

improved, the number, n, of edges increases; however, the number, m, of concave

regions remains fixed. Thus, the running time of our algorithm depends more on

the structure of the environment, as opposed to only counting edges. Therefore, in

practice it is much faster than the naive O(n4) algorithm.

The rest of the paper is organized as follows. Section 1.1 gives a brief overview

and history of the visibility-based pursuit-evasion problem. We introduce the no-

tation and provide some basic definitions in Section 1.2. Two formal models of the

pursuit as a search in a continuous information space are presented in Section 1.3

and Section 2. A discrete representation of the pursuit as a search in a finite graph is

presented in Section 3. In Section 4 we present an algorithm which, given a polygon

with n edges and m concave regions, decides in O(n2 +nm2+m4) time whether the

polygon can be cleared by two 1-searchers and if so, constructs a winning search

schedule. We note that the representations in Sections 1.3 and 2 are given only as

a conceptual framework and are not directly used by the algorithm in Section 4.

Section 5 concludes the paper with a summary and directions for future research.
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1.1. Related work

Pursuit-evasion in the plane was introduced by Suzuki and Yamashita.2 They con-

sidered a single pursuer looking for an evader inside a simple polygon. They defined

different kinds of pursuers depending on the number of flashlights that the pursuer

is equipped with, e.g., a 1-searcher has one flashlight, a k-searcher has k flashlights,

and an ∞-searcher has 360◦-vision. This naturally defines a pursuit-evasion prob-

lem for each class of searchers. Independently of Ref. 2, Icking and Klein defined

the “two guard walkability problem”,3 which is a search problem for two guards

whose starting and goal position are given, and who move on the boundary of a

polygon while maintaining mutual visibility. A solution to the two guards problem

was provided by Icking and Klein,3 followed by improvements in Refs. 4, 5. While

Refs. 1, 2, 6, 7, 8 presented polynomial solutions for deciding searchability of special

classes of polygons, the general case single pursuer problem was open for quite a

while.

Recently, the authors provided an O(n3) solution for a single 1-searcher in a

polygon,9 a result which they later improved to O(n + m log n + m2) in Ref. 10.

Park et al presented a polynomial solution for the case of a single 2-searcher and

proved that adding more flashlights to a single pursuer does not increase the class

of the polygons she can clear.11 Note that the set of polygons that can be cleared by

a single 2-searcher is a proper subset of the set of polygons that can be cleared by

two 1-searchers. Figure 4(a) presents an example of a polygon which can be cleared

by two 1-searchers, yet cannot be cleared by a single 2-searcher.

Guibas et al extended the pursuit-evasion problem to one in which multiple

pursuers collaborate in order to clear a polygonal region.12 They showed that de-

termining the minimal number of pursuers needed to clear a polygonal region with

holes allowed is an NP-hard problem. It is not known whether the same problem

defined over simple polygons without holes is also NP-hard.

Efrat et al considered pursuit-evasion by a chain of k guards as a generalization

of the search with two guards.13 Their pursuit is subject to the restriction that the

first and the k-th guards always move on the boundary while guard i, 1 < i < k

moves in the interior of the polygon and maintains visibility with her neighbors,

guards i − 1 and i + 1. Efrat et al gave a polynomial algorithm for the k guards

problem.13 Note that the pursuit with two 1-searchers is not a special case of the

k guards pursuit since (i) the 1-searchers are not required to maintain visibility all

the time, and (ii) for each 1-searcher, the endpoint of the ray of light emitted by her

flashlight does not have to move continuously along the boundary of the polygon.

Suzuki et al provided a polynomial-time solution for a version of the pursuit in

which a single ∞-searcher is restricted to the boundary of the polygonal region.14

Interesting upper bounds on the number of searchers necessary and sufficient to

clear a polygon were presented in Refs. 15, 16. Vidal et al addressed a version of

the pursuit-evasion problem that uses probabilistic models.17
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1.2. Notation and preliminaries

In the rest of the paper “pursuer” will be synonymous to a 1-searcher, unless oth-

erwise specified. Also, all polygons are assumed to be simple. The boundary of

a polygon P is denoted by ∂P and we assume that ∂P ⊆ P and that ∂P is ori-

ented in the clockwise (also called positive) direction. For two distinct points

a, c ∈ ∂P , we write ∂P (a, c) to denote the open interval of all points b ∈ ∂P such

that when starting after a in positive direction along ∂P , b is reached before c. We

write a ≺ b ≺ c, if b ∈ ∂P (a, c), and also use the notation ∂P [a, c], ∂P [a, c) and

∂P (a, c] for the closed and half-closed intervals on ∂P .

Let p0, p1, . . . , pn−1 denote the vertices on P ordered in positive direction. The

edges of ∂P are e0, e1, . . ., en−1, where edge ei has endpoints pi and pi+1, and the

indices are computed modulo n, e.g., pn = p0. Vertex pi ∈ ∂P is a reflex vertex if

the angle formed by incident edges ei−1 and ei, in the interior of P , is greater than

180◦ (i.e., points pi−1, pi, and pi+1, form a left turn). Otherwise, pi is a non-reflex

vertex.

We use a standard definition of visibility. For points c, d ∈ P we say that d

is visible from c, if every interior point of the line segment cd lies in P − ∂P .

Obviously, if one point is visible from another, then the two are mutually visible.

Note that no two points on the same edge of P are mutually visible.

q

q0

2

q3

q1

r

p

q1

r

q2

q0

q3

r

q3

q2

1q
q0

(a) (b) (c)

Fig. 1. The two kinds of gap edges: (a) left, (b) right. Part (c) illustrates a (right) gap edge in
which q1 and q2 are not mutually visible.

Let r ∈ P , q1, q2 ∈ ∂P be three colinear points, see Figure 1(a). We say that

the pair (q1, q2) forms a left gap edge relative to r if:

• q1 is visible from r,

• no point in ∂P (q1, q2] is visible from r,

• every open interval which contains q2 also contains a point visible from r.

Similarly, see Figure 1(b), the pair (q2, q1) forms a right gap edge relative to

r if:
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• q2 is visible from r,

• no point in ∂P [q1, q2) is visible from r,

• every open interval which contains q1 also contains a point visible from r.

Note that as seen in Figure 1(c), the gap edge definitions do not require q1 and

q2 to be mutually visible.

Clearly, the order of r, q1 and q2 is important in the definition of a gap edge.

However, from now on we will be a bit more casual about the order, if it can be

inferred from the context.

Consider q0, q1, q2, q3 ∈ ∂P ordered in positive direction and p ∈ P . Suppose

that r, q1 and q2 form a (left or right) gap edge and q0 and q3 are sufficiently close

to q1 and q2 respectively, so that all the points in (q0, q1)∪ (q2, q3) are visible from

r, see Figure 1, (a) or (b). Suppose a pursuer is located at r and her lightpoint

(the point of the boundary illuminated by her flashlight) is at q0. If the pursuer

rotates the flashlight clockwise, the lightpoint moves continuously over ∂P before

it reaches q1. At that moment the lightpoint jumps from q1 to q2. After q2 the

lightpoint moves continuously to q3. We call this a lightpoint jump from (r, q1)

to (r, q2). The reverse move, from (r, q2) to (r, q1), is also a lightpoint jump. We

note that the lightpoint jumps are the only possible discontinuities in the location

of the lightpoint.

1.3. Semantics of the pursuit

Within a polygon, the points which may contain the evader are defined to be con-

taminated and the rest of the points are defined to be clear.

For i = 0, 1 and mutually visible points ri ∈ P , qi ∈ ∂P , we say that pursuer

i is in configuration 〈ri, qi〉 if the pursuer is located at ri and her lightpoint is

at qi. Naturally then, the positions of both pursuers can be encoded as a pair of

configurations, 〈r0, q0〉 and 〈r1, q1〉.

The segments r0q0 and r1q1 partition P into a number of connected components.

We call each component a contamination region, consisting of all points of P

which are connected by a path within P not crossed by a ray of light.a For example,

in Figure 2(a) there are two contamination regions, C0 and C1. For stationary

pursuers, an evader can move undetected to every point within a contamination

region, hence all the points in that region have the same contamination status and

we simply refer to the contamination region itself as being contaminated, or clear.

We can now define the motion of the pursuers as a trajectory in the space

P × ∂P × P × ∂P , parametrized over time. Without loss of generality we can

assume that the pursuit starts at time t = 0 with the polygon contaminated. For

i = 0, 1, define the functions ri : [0,∞) → P , and qi : [0,∞) → ∂P , such that at

time t the i-th pursuer is in configuration 〈ri(t), qi(t)〉. For i = 0, 1, the functions

aTo avoid tedious technicalities, we exclude from the partition the points lying on the segments
r0q0 and r1q1.
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ri and qi are subject to some additional constraints stemming from the semantics

of the pursuit:

• At any time t ∈ [0,∞), ri(t) and qi(t) are mutually visible.

• The position of the pursuer, ri(t), is a continuous function.

• The lightpoint, qi(t), is a piecewise continuous function with discontinuities

corresponding to the lightpoint jumps defined earlier.

We define a schedule to be a 4-tuple of functions, (r0(t), q0(t), r1(t), q1(t)),

satisfying the above constraints. Starting with a contaminated polygon P , at any

time t ≥ 0 of the pursuit, a given schedule implicitly determines the contamination

status of all the connected components of P , that is, at any time there is a well-

defined set of points in P which are clear. If a schedule starts at time t = 0 with a

contaminated polygon and at some time t = T , the polygon is clear, the schedule

is called a winning schedule.

Definition 1. A polygon P can be cleared by two 1-searchers if there exists a

winning schedule for P .

2. Canonical pursuit

In Section 1.3 we defined a model of the pursuit, called a schedule. Its main ad-

vantage is its simplicity, i.e., it explicitly represents the motions of the pursuers.

However, it has certain shortcomings. First, a snapshot of the pursuit at a fixed

moment of time t, or equivalently, the values (r0(t), q0(t), r1(t), q1(t)) alone, do not

give us information about the complete status of the pursuit. We need the past

trajectory of the four functions to determine the clear and contaminated areas of

the polygon.

In this section we consider an equivalent model of pursuit, in which the two

1-searchers stay on the boundary most of the time. While the schedule defined in

Section 1.3 corresponds to a trajectory in (P × ∂P )2, the schedule we define in

Section 2.2 is similar to a trajectory in a smaller space, (∂P )4. Every snapshot of

the new representation will encode the complete status of the pursuit: the pursuers’

positions and the contaminated regions of the polygon.

2.1. Canonical configurations

We first show how, without causing contamination, we can map an arbitrary con-

figuration to one in which the pursuer is on the boundary. For i = 0, 1, suppose

pursuer i is at point ri ∈ P − ∂P , directing the beam at point qi ∈ ∂P , see Fig-

ure 2(b). Shoot a ray starting from ri in the direction opposite of qi and let pi ∈ ∂P

be the first boundary point hit by the ray. We say that 〈pi, qi〉 is the canonical

configuration corresponding to the configuration 〈ri, qi〉. If ri ∈ ∂P , then 〈ri, qi〉

maps to itself.
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Fig. 2. Contamination regions induced: (a) by configurations 〈r0, q0〉 and 〈r1, q1〉 and (b) by the
corresponding canonical configurations 〈p0, q0〉 and 〈p1, q1〉.

An interesting property of the mapping is that the contamination regions in-

duced by the segments piqi are a refinement of the regions induced by the segments

riqi. For example, consider Figure 2(b) and assume the pursuers are in configura-

tions 〈ri, qi〉, i = 0, 1. If we define the area C1 = C0
1 ∪ C1

1 ∪ C2
1 , then r0q0 and r1q1

partition P into just two contamination regions, C0 and C1. On the other hand, for

the corresponding canonical configurations, 〈pi, qi〉, i = 0, 1, there are four contam-

ination regions: C0, C0
1 , C1

1 and C2
1 . The contamination regions C0, C0

1 , C1
1 and C2

1

are a refinement of the regions C0 and C1 which leads us to the following remark.

Remark 1. At any single moment, we can replace a pair of pursuers located in

the interior of P with the corresponding canonical pair without causing additional

contamination.

We showed how to map an arbitrary configuration into a corresponding canoni-

cal one. A natural continuation would be to use the same transformation to map an

arbitrary trajectory of a pursuer from P × ∂P onto ∂P × ∂P . Most of the time the

continuous motion of ri(t) ∈ P translates into a continuous motion of pi(t) ∈ ∂P ,

see Figure 3(a). However, there are exceptions: pi may not be a continuous function

on ∂P , as seen in the example in Figure 3(b). For simplicity, assume that pursuer

0 is stationary at point r0 with lightpoint q0. Pursuer 1 moves over a continuous

path from r1
1 to r4

1 , which is projected as a piecewise continuous path on ∂P

from p1
1 to p4

1. The move of the first pursuer can be divided into two parts. The first

part, from r1
1 to r2

1 , is projected into the continuous path from p1
1 to p2

1. The second

part, from and excluding r2
1 to r4

1 , is projected into the continuous path from and

excluding p3
1 to p4

1. Note that the jump from p2
1 to p3

1 represents a discontinuity

in p1(t), the projection of r1(t) on ∂P , and this jump cannot be simulated by a

pursuer moving solely over the boundary.

The solution is to allow the pursuer to move along the segment p2
1p

3
1. Thus the

continuous motion from r1
1 to r4

1 can be represented as a continuous motion from p1
1

to p2
1 along ∂P , followed by a continuous motion from p2

1 to p3
1 inside P , followed by

a continuous motion from p3
1 to p4

1 along ∂P . Note that technically, we do not want

the motion from p2
1 to p3

1 to be exactly along the segment p2
1p

3
1 since q1 will not be
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Fig. 3. Projecting motion in the interior onto motion on the boundary.

visible along the segment. Instead, the move is performed along a segment p2
1p

∗,

where p∗ ∈ ∂P is sufficiently close to p3
1 so that every point from p2

1p
∗ is visible

from q1.

We call the move from 〈p2
1, q1〉 to 〈p3

1, q1〉 a pursuer jump. Just like in the case

of the lightpoint jump, the reverse move, from 〈p3
1, q1〉 to 〈p2

1, q1〉, is also considered

a pursuer jump. Note that in reality the physical location of the pursuer is still

continuous but at least for a moment the pursuer had left the boundary. From now

on this will be the only circumstance in which the pursuers will leave ∂P .

2.2. Canonical schedule

Our next goal is to define a pursuer schedule based on canonical configurations.

Recall that we defined canonical configurations as directed line segments of mutually

visible points on the boundary. However a lot of the discussion in the rest of the

paper will deal with visibility, which is a symmetric relation. Therefore, we do not

base the new schedules solely on the original definition of canonical configurations,

but we also incorporate an alternative interpretation of canonical configurations as

undirected line segments.

Let x0, y0, x1, y1 ∈ ∂P , such that x0 ≺ x1 ≺ y1, and for i ∈ {0, 1}, xi and yi

are mutually visible. Let the order (of y0), k, denote the number of points from

{x1, y1} between x0 and y0, or:

k = |{x1, y1} ∩ ∂P (x0, y0)| =







0, if x0 ≺ y0 ≺ x1 ≺ y1

1, if x0 ≺ x1 ≺ y0 ≺ y1

2, if x0 ≺ x1 ≺ y1 ≺ y0

We refer to (x0, y0, x1, y1, k) as a visibility tuple. Due to the circularity of ∂P ,

each tuple has three more equivalent tuples: (y0, x1, y1, x0, k
′), (x1, y1, x0, y0, k

′′),

and (y1, x0, y0, x1, k
′′′). The set of all visibility tuples is defined as the visibility

space, Iv.
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Fig. 4. Visibility obstruction diagram (b) for the polygon in (a). The white regions in (b) corre-
spond to the set Xv of the mutually visible pairs of points in ∂P . The two pursuers are located at
points 16 and 5 of the polygon in (a) and illuminate points 3 and 7 respectively. The positions of
the pursuers are shown as the black circles at points (5, 7) and (3, 16) in the visibility obstruction
diagram (b).

Consider a visibility tuple (x0, y0, x1, y1, k) and suppose 〈p0, q0〉 and 〈p1, q1〉

are two configurations with the property the light segments p0q0 and p1q1 are

equivalent to the light segments x0y0 and x1y1 up to reordering of the endpoints

of the segments and swapping the indices. The visibility tuple contains exactly the

same visibility information as the pair of configurations 〈p0, q0〉, 〈p1, q1〉. At the

same time, the visibility tuple has the advantage that the order of the points x0,

y0, x1, and y1 is completely determined by their position in the tuple and k.

Let 0 be an arbitrary point from the boundary. Denote with X the set of all

pairs of points (x, y) ∈ ∂P × ∂P , such that 0 � x � y ≺ 0. Denote with Xv the

set of all pairs (x, y) ∈ X , such that x and y are mutually visible. The set Xv is

part of the visibility obstruction diagram (VOD) defined in Ref. 9, as a graphical

representation of the visibility relation between pairs of points from ∂P . The only

difference is that, since visibility is a symmetric relation, without loss of generality,

in this paper we have restricted Xv to the points above the diagonal. For example,

consider the polygon in Figure 4(a). The corresponding VOD Xv is shown as the

set of points in the white regions in Figure 4(b). If for the moment we disregard k,

then we can think about a visibility tuple merely as two points in Xv. A visibility

tuple (3, 16, 5, 7, 2) denotes that the two light segments are 3, 16 and 5, 7 but does

not determine the position of the pursuers, i.e., pursuer 0 can be either at point 3

or at point 16 of the polygon in Figure 4(a). Points (3, 16) and (5, 7) from the set

Xv shown in Figure 4(b) represent the positions of the two light segments 3, 16 and
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5, 7.

We have replaced a pair of configurations 〈p0, q0〉 and 〈p1, q1〉, i.e., two directed

segments, with a visibility tuple (x0, y0, x1, y1, k), which no longer stores the direc-

tion of the segments, or equivalently, the location of the pursuer. To record this

additional information, we need one extra bit for each segment. For i ∈ {0, 1}, de-

fine the direction bit di for pursuer i, such that di ∈ {0, 1}, and di = 0, when xi

corresponds to a pursuer location, i.e., when xi ∈ {p0, p1}.

As we mentioned before, one drawback of the schedule defined in Section 1.3

is that it does not explicitly show the status of the contamination regions. We fix

this as follows. Since the segments piqi, or equivalently, xiyi, i = 0, 1, divide the

boundary into four regions, four bits will be sufficient to record the contamination

status at a given moment of time. Let us number the intervals on the boundary

from 0 to 3 in positive direction, starting from the interval beginning at x0. For

i = 0 . . . 3, define contamination bit bi ∈ {0, 1}, to be the contamination status

of interval i, with bi = 0, when the interval is clear. We refer to (d0, d1, b0, b1, b2, b3)

as a bits tuple. The set of all bits tuples is defined as the bits space, Ib.

Consider a fixed moment during a pursuit, and suppose that the two pursuers

are in configurations 〈pi, qi〉, i = 0, 1. Let k, xi, yi, di, i = 0, 1, and bj , j = 0 . . . 3

be as defined above. Define the canonical information state for the pursuit to

be the concatenation of the visibility and the bits tuples:

(x0, y0, x1, y1, k, d0, d1, b0, b1, b2, b3)

Note that the information state gives us explicitly a full snapshot of the pursuit

at that moment. Consider again the polygon in Figure 4(a) and its corresponding

VOD, Figure 4(b). A canonical information state (3, 16, 5, 7, 2, 1, 0, 0, 1, 0, 1) denotes

that the two pursuers are at points 16 and 5, illuminating points 3 and 7 respectively.

The intervals ∂P (5, 7) and ∂P (16, 3) are contaminated. The intervals ∂P (3, 5) and

∂P (7, 16) correspond to the same region which is clear.

A canonical information state is a start if all the contamination bits are 1,

corresponding to a contaminated polygon. A canonical information state is a goal

if the contamination bits are 0, i.e., the polygon is clear. The set of all canonical

information states is the canonical information space, I. Observe that I =

Iv × Ib, i.e., I is a product of the infinite space Iv and the finite space Ib.

After the definition of information states and the introduction of the pursuer

jump we can define a canonical schedule to be a piecewise continuous trajec-

tory in the corresponding canonical information space, I, parametrized over time.

The canonical schedule is quite similar to a schedule with the additional restriction

that the pursuers most of the time move on the boundary and enter the interior

only during the pursuer jumps. We can view a canonical schedule as a function

I : [0,∞)→ I, where I(t) = (x0, y0, x1, y1, k, d0, d1, b0, b1, b2, b3) encodes the infor-

mation state at time t. Just like in the previous definitions, a canonical schedule

has to also satisfy some conditions derived from the semantics of the pursuit:
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• The functions xi(t), yi(t) are piecewise continuous in ∂P , with discontinu-

ities corresponding to pursuer or lightpoint jumps. The direction bit di is

required to determine the type of a jump for xi(t) or yi(t).

• At time 0 the canonical schedule is in a starting canonical information

state.

• The direction bits di, the contamination bits bj and the order k change only

during a jump or during a change in the relative order of x0, y0, x1, y1. (We

provide a detailed explanation of the types of changes to the information

states in Section 2.3.)

A canonical schedule which at some time reaches a goal state is called a winning

canonical schedule.

In the rest of this section we show that winning schedules are equivalent to the

original schedules. That is, we do not reduce the power of the pursuers by restricting

them to moving on the boundary most of the time.

Lemma 1. A polygon can be cleared by two 1-searchers, if and only if there exists

a winning canonical schedule.

Proof. First, consider the reverse direction. Note that if we ignore the details of

the representation, every canonical schedule is just a more restricted version of a

schedule. So if there exists a winning canonical schedule, then there also exists a

winning schedule, therefore the polygon can be cleared by two 1-searchers.

For the forward direction, assume that the polygon can be cleared, so there exists

a winning schedule. Consider its corresponding canonical schedule. From Remark 1,

at any time, the area of the polygon which is cleared by the canonical schedule is

equal to or includes the area cleared by the original schedule. If the original schedule

is a winning one, then at some point it will clear the entire polygon. It follows that

the area cleared by the corresponding canonical schedule is the whole polygon as

well, therefore the canonical schedule is also a winning one.

2.3. Changes to the canonical information states

In this section we discuss the ways contamination bits change. This will allow us

to define a finite set of elementary moves, so that a canonical schedule can be

considered a sequence of these elementary moves.

From the definition of a canonical schedule, it follows that it is a piecewise

continuous function in I. If we consider every element of the tuple I(t) as a function

of time, for most of the duration of the pursuit, it is a continuous function. Only

at discrete moments of time, there are relative order changes or discontinuities

in x0, y0, x1, or y1. These conditions trigger corresponding changes in the other

elements of the tuple, the direction bits di, the contamination bits bj and the order

k. We identify the different types of changes to the information state and define

those as elementary moves. For a given schedule, let 0 < t1 < t2 < . . . be the



February 6, 2007 12:48 WSPC/Guidelines paper

12

points of time at which either a jump or a change of order occurs. We call each

portion (ti−1, ti) of the schedule a type 1 move. Every type 1 move corresponds to

a continuous path in the canonical information space, I. On the other hand, the

change occurring at each ti corresponds to a jump in I. Details about the different

types of elementary moves are provided in the rest of the section.

We assume that at the beginning of the move, the information state is

I ′ = (x′

0, y
′

0, x
′

1, y
′

1, k
′, d′0, d

′

1, b
′

0, b
′

1, b
′

2, b
′

3) ,

and at the end of the move the information state is

I ′′ = (x′′

0 , y′′

0 , x′′

1 , y′′

1 , k′′, d′′0 , d′′1 , b′′0 , b′′1 , b′′2 , b′′3) .

In the following paragraphs we denote the move from I ′ to I ′′ as (I ′ ⇒ I ′′) and

we describe the move by defining the value of I ′′ as a function of I ′. Also, we note

that the reverse move, from I ′′ to I ′, is also an elementary move. We denote it as

(I ′ ⇐ I ′′) and we describe it by defining the value of I ′ as a function of I ′′. For

simplicity, if any of the xi’s or the yi’s are the same in I ′ and in I ′′, we omit the ′

symbol. An exhaustive list of all the elementary moves follows:

Type 0: change of choice of x0

This elementary move is purely technical. It represents no real change in the canon-

ical information state, merely a relabeling of the positions of the pursuers and the

bits. Recall that in the definition of a canonical information state in Section 2.2

we chose x0 arbitrarily out of {p0, q0, p1, q1}. This implies that depending on the

choice of x0, there are four different canonical information states which represent

the same status of the pursuit. In order to account for that fact, we define a move

which switches x0 to be the next point in positive direction out of x1, y0. (Note that

we do not have to consider y1 as a next point since it is always after x1 in positive

direction.) The following figure is an example of a type 0 move from a canonical

configuration with k = 0.

(I′) (I′′)

xy’

x’ y

b’

b’

b’

b’
10

1

0

3

1

0

2

xx"

y" y

b"

b"

b"

b"
10

0 1

0

3

2

1
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Let I ′ be the information state before the switch. Depending on the value of k′,

after the switch the value of I ′′ is as follows:

(I ′ ⇒ I ′′) : I ′′ =







(y′

0, x
′

0, x
′

1, y
′

1,1− d′0, d′1, 2, b′1, b
′

2, b
′

3, b
′

0), if k′ = 0

(x′

1, y
′

1, y
′

0, x
′

0, d′1, 1− d′0,1, b′1, b
′

2, b
′

3, b
′

0), if k′ = 1

(x′

1, y
′

1, y
′

0, x
′

0, d′1, 1− d′0,0, b′1, b
′

2, b
′

3, b
′

0), if k′ = 2

Type 1: no jumps, no change in the relative order

This is a continuous move which occupies most of the time of the canonical schedule.

Throughout the duration of the move there are no jumps. Both the relative order

of x0, y0, x1, y1 and the values of the bits are preserved. The next figure provides

an example for a type 1 move with k = 1. The move is similar for the other values

of k.

(I′) (I′′)

x

x"

y

x’

y1

1
0

1

0

x

x"

y

x’

y

1

1

1
0

0

Apart from the location of the points x0, y0, x1, y1, the other parameters of the

information states do not change:

(I ′ ⇒ I ′′): k′′ ← k′, b′′j ← b′j, j ∈ Z3

(I ′ ⇐ I ′′): k′ ← k′′, b′j ← b′′j , j ∈ Z3

A type 1 move followed immediately by its own reverse, always returns to the

original information state.

Type 2: clearing a corner

The move occurs at a moment in which one of the light segments, xiyi, becomes

arbitrarily small, i.e., during the move points xi and yi merge at (or more precisely,

converge arbitrarily close on both sides of) a non-reflex vertex, p.

Since the type 0 move allows us to relabel the points, without loss of generality,

we can assume that x1 and y1 merge at vertex p ∈ ∂P (x1, y1), as shown in the
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example.

(I′) (I′′)

y

x

x’

y’

b

b

b b’
p

0

1

1

0

3

1

2

0

y

x y
x
p0 1

1

0
y

x

x"

y"

b

b

b b"
p

0

0

1

0

3

1

2

1

Since the underlying contamination region can be made arbitrarily small, we

assume that after the move the region incident to p is clear. The forward and the

reverse move are identical, so we only describe one:

(I ′ ⇒ I ′′): k′′ = k′, b′′2 ← 0, b′′j ← b′j , j ∈ {0, 1, 3}

Type 3: point merge move

The move occurs at a moment in which two endpoints of different light segments

merge into a single one and subsequently their relative order changes. As mentioned

before, the type 0 move allows us without loss of generality to choose x0 such that

k′ = 0 and the merge is between y0 and x1. In the forward direction, the move

represents a change in the relative order from x0 ≺ y0 ≺ x′

1 ≺ y1 to x0 ≺ x′′

1 ≺

y0 ≺ y1, i.e., y0 and x1 switch positions.

(I′) (I′′)

x’y

x y

x"

b

b

b

b’
10

0 1

1

2

3

1

0

x’y

x y

x"

10

0 1

1

x’y

x y

x"

b

b

b

b"
10

0

1

0

2

3

1

1

At the moment in which y0 = x1 there is a change in the contamination regions.

There were three regions prior to that moment and four regions after that. The

newly created region is clear. The tuples change as follows:

(I ′ ⇒ I ′′) : k′′ = 1, b′′1 ← 0, b′′j ← b′j, j ∈ {0, 2, 3}

(I ′ ⇐ I ′′) : k′ = 0, b′1 ← b′′3 , b′j ← b′′j , j ∈ {0, 2, 3}
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Type 4 and Type 5: lightpoint and pursuer jumps

Next we describe moves of type 4 and type 5. They are both similar in the sense that

one of the pursuers makes a pursuer or lightpoint jump, while the other pursuer is

stationary. The jump results in possible contamination of previously clear regions.

(We call this recontamination.) There may also be a simultaneous change in the

relative order of the points x0, y0, x1, and x1.

Without loss of generality, we can choose x0 such that (i) pursuer 1 is stationary

(ii) y′

0 is an interior point of the line segment x0y
′′

0 , (iii) there is a jump from y′

0

to y′′

0 . The jump is a lightpoint one if and only if d0 = 0. Otherwise, if d0 = 1, the

jump is a pursuer one.

The way a jump will affect the values of k and bj depends on the relative position

of x0, y′

0, y′′

0 , x1 and y1, i.e, on the old and new values of k: k′, k′′ ∈ {0, 1, 2}. Without

loss of generality we can assume that k′ ≥ k′′ which leaves 6 different combinations

for k′ and k′′. One of the combinations (k′ = 1, k′′ = 0) is infeasible, the other five

are shown as follows:

k′ = 0 k′ = 1 k′ = 2 k′ = 2 k′ = 2 k′ = 1

k′′ = 0 k′′ = 1 k′′ = 2 k′′ = 0 k′′ = 1 k′′ = 0

(I ′)

y’

x

x

y
1

1

0

0

y"
0

0 3

b’1

b’b’ b’2

y’

y"

x

0

0

x
1

y
1

0

b’

b’

b’

1

2

30b’

y’

x

0

0

y
1

x
1

y"
0

b’ b’

b’
2

30

1
b’ y’

x
0

x
1

y
1

y"
0

b’

b’

0

0
b’
3

b’2

1

y’

y"

x

0

0

0

y
1

x
1

b’

b’

b’

b’
2

1

0

3

y’

y"

x

0

0

0

1

1

x

y

(I ′′)

y’

x

x

y
1

1

0

0

y"
0

0 3

1

b"

b"

b" b"2

y’

y"

x

0

0

x
1

y
1

0

b"

b"

b"

1

2

3b"0

y’

x

0

0

y
1

x
1

y"
0

b"

b" b"
0

1

2

3

b" y’

x
0

x
1

y
1

y"
0

b"

b" b"

0

0

1 2

b"
3

y’

y"

x

0

0

0

y
1

x
1

b"

b"

b"
0

3

b"
1

2

y’

y"

x

0

0

0

1

1

x

y

(a) (b) (c) (d) (e) not feasible

Type 4: lightpoint jump

In the forward direction of this move, (I ′ ⇒ I ′′), there is a single lightpoint jump,

from y′

0 to y′′

0 , i.e., d0 = 0. The changes to the tuples are listed for each of the 5
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possible cases:

(a) (I ′ ⇒ I ′′): k′′ ← 0, b′′3 ← b′′1 ← b′1 ∨ b′0, b
′′

j ← b′j , j ∈ {0, 2}

(I ′ ⇐ I ′′): k′ ← 0, b′0 ← b′′0 ∨ b′′1 , b′j ← b′′j , j ∈ {1, 2, 3}

(b) (I ′ ⇒ I ′′): k′′ ← 1, b′′2 ← b′2 ∨ b′1, b
′′

j ← b′j, j ∈ {0, 1, 3}

(I ′ ⇐ I ′′): k′ ← 1, b′1 ← b′′1 ∨ b′′2 , b′j ← b′′j , j ∈ {0, 2, 3}

(c) (I ′ ⇒ I ′′): k′′ ← 2, b′′3 ← b′3 ∨ b′2, b
′′

j ← b′j, j ∈ {0, 1, 2}

(I ′ ⇐ I ′′): k′ ← 2, b′0 ← b′2 ← b′′2 ∨ b′′3 , b′j ← b′′j , j ∈ {1, 3}

(d) (I ′ ⇒ I ′′): k′′ ← 0, b′′1 ← b′′3 ← b′2 ∨ b′3, b
′′

0 ← b′0, b
′′

2 ← b′1
(I ′ ⇐ I ′′): k′ ← 2, b′2 ← b′0 ← b′′0 ∨ b′′1 , b′3 ← b′′3 , b′1 ← b′′2

(e) (I ′ ⇒ I ′′): k′′ ← 1, b′′2 ← b′′1 ← b′1, b
′′

3 ← b′3 ∨ b′2, b
′′

0 ← b′0
(I ′ ⇐ I ′′): k′ ← 2, b′2 ← b′0 ← b′′0 ∨ b′′3 , b′1 ← b′′1 ∨ b′′2 , b′3 ← b′′3

Type 5: pursuer jump

In the forward direction of this move, (I ′ ⇒ I ′′), there is a single pursuer jump,

from y′

0 to y′′

0 , i.e., d0 = 1. The changes to the tuples are listed for each of the 5

possible cases:

(a) (I ′ ⇒ I ′′): k′′ ← 0, b′′0 ← b′′1 ← b′′3 ← b′0 ∨ b′1, b
′′

2 ← b′2
(I ′ ⇐ I ′′): k′ ← 0, b′0 ← b′1 ← b′3 ← b′′0 ∨ b′′1 , b′2 ← b′′2

(b) (I ′ ⇒ I ′′): k′′ ← 1, b′′1 ← b′′2 ← b′1 ∨ b′2, b
′′

j ← b′j, j ∈ {0, 3}

(I ′ ⇐ I ′′): k′ ← 1, b′1 ← b′2 ← b′′1 ∨ b′′2 , b′j ← b′′j , j ∈ {0, 3}

(c) (I ′ ⇒ I ′′): k′′ ← 2, b′′0 ← b′′2 ← b′′3 ← b′2 ∨ b′3, b
′′

1 ← b′1
(I ′ ⇐ I ′′): k′ ← 2, b′0 ← b′2 ← b′3 ← b′′2 ∨ b′′3 , b′1 ← b′′1

(d) (I ′ ⇒ I ′′): k′′ ← 0, b′′0 ← b′′1 ← b′′3 ← b′3 ∨ b′2, b
′′

2 ← b′1
(I ′ ⇐ I ′′): k′ ← 2, b′0 ← b′2 ← b′3 ← b′′0 ∨ b′′1 , b′1 ← b′′2

(e) (I ′ ⇒ I ′′): k′′ ← 1, b′′2 ← b′′1 ← b′1, b
′′

0 ← b′′3 ← b′0 ∨ b′3
(I ′ ⇐ I ′′): k′ ← 2, b′1 ← b′′1 ∨ b′′2 , b′0 ← b′2 ← b′3 ← b′′0 ∨ b′′3

3. Finite representation

In the previous section we defined canonical configurations as a simpler model for

the two pursuer problem. Yet the canonical information space is still an infinite

one, which makes an exhaustive search for a winning canonical schedule infeasible.

In this section we will introduce an equivalent, finite representation of the search

space and we will show how to find a winning strategy by an exhaustive search in

the finite space.

3.1. VHC boxes

Let X = ∂P (x, x) and Y = ∂P (y, y) be two open intervals from ∂P such that

x ≺ x ≺ y and x ≺ y ≺ y. Let B(X, Y ) be the region from X defined as {(x, y) |

x ∈ X, y ∈ Y, x ≺ x ≺ y} and define C(X, Y ) = B(X, Y )∩Xv . We say that B(X, Y )

is a vertically and horizontally convex (VHC) box, and that C(X, Y ) is a

VHC core, if the following conditions hold:
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(a) (b)

Fig. 5. Part (a) is an example of a VHC box B and core C with the extreme points denoted as
black circles. Part (b) shows the VOD of the polygon from Figure 4(a). The intervals X = (2, 4)
and Y = (13, 16) define a VHC box which is shown as a rectangle with thick solid lines. The
corresponding VHC core is the white area inside the VHC box.

• C(X, Y ) is non-empty.

• for every x∗ ∈ X , the set {y | (x∗, y) ∈ C(X, Y )} is a single connected

nonempty interval. This condition corresponds to horizontal convexity.

• for every y∗ ∈ Y , the set {x | (x, y∗) ∈ C(X, Y )} is a single connected

nonempty interval. This condition corresponds to vertical convexity.

We define eight parameters or extreme points, which will be sufficient to

represent C(X, Y ). Let x be the lower boundary of the interval X . If (x, y1) and

(x, y2) are the endpoints of the segment {(x, y) | (x, y) ∈ C(X, Y )}, we call them the

extreme points for x. Similarly, there are three other pairs of extreme points, two

points for each x, y and y. For example of a VHC box, VHC core, and corresponding

parameters, refer to Figure 5. In the rest of the paper, we will not be interested in

the precise shape of C(X, Y ). Instead, the points x, x, y, y, x1, x2, x3, x4, y1, y2,

y3, y4 will be sufficient to record the extremums of C(X, Y ). Note that the extreme

points need not be distinct and it is possible for a box to have as few as two unique

extreme points.

For i = 0, 1, let Xi = (xi, xi), and Yi = (yi, yi) be open intervals on the boundary

∂P , defining the VHC box B(Xi, Yi). Consider the intersections X0 ∩X1, X0 ∩ Y1,

Y0 ∩ X1 and Y0 ∩ Y1. If at most one of the four intersections is nonempty, we

say that the two boxes are independent. Otherwise, we say that the boxes are

dependent. See Figure 6 for examples of the two kinds. In part (a), consider

X0 = (a, c), Y0 = (b, d), X1 = (e, f) and Y1 = (g, h), defining boxes B0 and B1

correspondingly. Neither X0 nor Y0 intersect with X1 or Y1, therefore the boxes

B0 and B1 are independent. In part (b) of the same figure, consider X0 = (a, b),

Y0 = (e, f), X1 = (c, g) and Y1 = (d, h), defining boxes B0 and B1 correspondingly.
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Fig. 6. Part (a) is an example of independent VHC boxes. Part (b) is an example of dependent
boxes.

Since Y0 intersects with both X1 and Y1, it follows that B0 and B1 are dependent

boxes.

The next lemma allows us to determine in constant time whether a particular

visibility tuple is feasible.

Lemma 2. Let X0, Y0, X1, and Y1 be open intervals on the boundary ∂P , defin-

ing VHC boxes B(X0, Y0) and B(X1, Y1). Given an integer k ∈ {0, 1, 2} and the

parameters of the two boxes, define the condition

∃(xi, yi) ∈ C(Xi, Yi), 0 ≤ i ≤ 1 : Iv = (x0, y0, x1, y1, k) ∈ Iv . (1)

The condition above can be evaluated in O(1) time. If existing, a tuple Iv can be

constructed in time O(1) if the boxes are independent and in time O(n) if the boxes

are dependent.

Proof. The proof is presented in the appendix.

3.2. Concave regions and critical intervals

Let pi and pj be two different non-reflex vertices from ∂P which are not adjacent. If

all the vertices pi+1, . . . , pj−1 are reflex vertices, we say that pi and pj are critical

points and we refer to the subinterval of ∂P of the form ∂P (pi, pj) as a concave

region. b We denote by m the number of concave regions in the polygon. So in

a polygon P there are 2m critical points which divide ∂P into 2m intervals called

critical intervals. Obviously, two concave regions cannot overlap and must be

bThe terms concave regions and critical points of ∂P have been defined previously, see Ref. 18 for
more details.
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Fig. 7. The polygon in part (a) has critical points 0, 5, 11 and 18 and concave regions ∂P (0, 5)
and ∂P (11, 18). Part (b) shows the VOD of the same polygon with the grid created by the critical
points.

separated by non-concave regions (each of which contains at least one non-reflex

vertex). For example, for the polygon in Figure 7(a) we have m = 2, the critical

points are 0, 5, 11 and 18 and the concave regions are ∂P (0, 5) and ∂P (11, 18).

The critical points define a grid of vertical and horizontal lines over X which

partition the set of mutually visible points Xv into multiple maximal connected

subsets. The next lemma establishes a connection between the elements of this grid

and the VHC cores defined in Section 3.1.

Lemma 3. Consider the grid over X defined by the critical points and let A be

an arbitrary grid element. If C is the intersection of the interior of Xv with the

interior of A, then C is either empty or it is a VHC core.

Proof. The proof follows directly from Lemma 3.9 of Ref. 18.

Later in the paper we will show that for every pair of critical intervals Rα, Rβ ,

where α, β ∈ Z2m, there is at most one maximal VHC box B(X, Y ), such that

X ⊆ Rα and Y ⊆ Rβ . We will describe how given α and β we can compute the

extreme points of B(X, Y ) and vice versa. This will allow us, instead of considering

the rather complex shape of Xv, to work with the individual VHC core inside each

grid element. The latter task is much more feasible since each of the cores has a

simple shape as guaranteed by the vertical and horizontal convexity property.
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3.3. Equivalence classes in I and finite search schedule

In Section 1.3 we defined contamination regions in order to capture equivalence

of positions of the evader. In this section we explore similarities between mutual

positions of the two pursuers in order to group together equivalent visibility tuples

and also the corresponding equivalent canonical information states.

We define a binary relation on the visibility tuples. Let P be a polygon with

a corresponding partition of ∂P into critical intervals. Consider a pair of visibility

tuples

Ii
v = (xi

0, y
i
0, x

i
1, y

i
1, k), i ∈ {0, 1} .

We say that I0
v is similar to I1

v if there exist critical intervals Rα, Rβ , Rγ , and

Rδ, such that, for i ∈ {0, 1}, xi
0 ∈ Rα, yi

0 ∈ Rβ , xi
1 ∈ Rγ , yi

1 ∈ Rδ. Clearly, “similar”

is an equivalence relation so from now on we just say that I0
v and I1

v are similar.

We denote the equivalence class containing I0 and I1 as (α, β, γ, δ, k). The relation

partitions Iv into O(m4) equivalence classes.

The “similar” relation on visibility tuples can be extended to a relation on

canonical information states. Let I0 and I1 be two canonical information states,

such that for i ∈ {0, 1}, Ii is a concatenation of a visibility tuple Ii
v and a bits tuple

Ib. We say that I0 and I1 are similar if I0
v and I1

v are similar. The “similar” relation

over informations states is also an equivalence relation. It partitions the information

space I into O(m4) equivalence classes of the form (α, β, γ, δ, k, d0, d1, b0, b1, b2, b3),

where α, β, γ, δ, and k are as described above, while d0, d1 and b0, b1, b2, b3, are

the direction and contamination bits, correspondingly.

Lemma 4. Let I0 and I1 be similar canonical information states, contained in the

equivalence class v. It follows that there is a type 1 move from I0 to I1 entirely over

canonical information states in v.

Proof. Follows from the definition of VHC boxes.

We define the directed information state graph G = (V, E) to capture the

equivalence classes of the similar relation over I. The set of vertices of G is V (G) ⊂

(Z2m)
4 × Z3 × (Z2)

6
. A tuple v = (α, β, γ, δ, k, d0, d1, b0, b1, b2, b3) ∈ V (G) if and

only if v is a (non-empty) equivalence class of the similar relation over I. The set of

edges, E(G), consists of all the pairs (v0, v1), such that there is an elementary move

from some canonical information state in v0 to some canonical information state in

v1. Intuitively, we are replacing the canonical schedules (i.e., piecewise continuous

trajectories in I) defined in Section 2.2, with corresponding finite paths in G.

Define v ∈ V (G) to be a starting (respectively, goal) vertex if v contains a start-

ing (respectively, goal) canonical information state. A winning finite schedule is

a path in G from a starting to a goal vertex.

Lemma 5. For a polygon P , there exists a winning canonical schedule, if and only

if there exists a winning finite schedule.
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Proof. Let I and G be the canonical information space and the information state

graph for the polygon P .

First, suppose there exists a winning canonical schedule, i.e., there exists a path

π ⊂ I from a starting to a goal information state, such that π consists of elementary

moves. The path π can be divided into subpaths π0, π1, . . . , πk where each πi is a

path within the same equivalence class vi ⊂ I, vi ∈ V (G), 0 ≤ i ≤ k. Since the

path π0 begins at a starting canonical state, then v0 is a starting vertex. Also, for

1 ≤ i ≤ k, the transition from πi−1 to πi corresponds to an elementary move, so

(vi−1, vi) ∈ E(G). It follows that the corresponding path v0, v1, . . . , vk is a finite

schedule. Finally, πk ends at a goal canonical information state, so vk is a goal

vertex and the path v0, v1, . . . , vk represents a winning finite schedule.

Second, suppose that there exists a winning finite schedule v0, v1, . . . , vk. For

1 ≤ j ≤ k, from (vj−1, vj) ∈ E(G), it follows that there exist canonical information

states I ′′j−1 ∈ vj−1 and I ′j ∈ vj and also a path πj in I which corresponds to an

elementary move from I ′′j−1 to I ′j . Of course, in general, for 1 ≤ j ≤ k − 1, I ′j is

different from I ′′j , so simply concatenating the paths π1, π2, . . . πk will not yield a

valid canonical schedule. On the other hand, since for 1 ≤ j ≤ k−1, I ′j and I ′′j belong

to the same equivalence class vj , we can apply Lemma 4, which states that there

is a (type 1) elementary move between the two states, thus there is a path ρj from

I ′j to I ′′j . Define the path π ⊂ I as a concatenation of π1, ρ1, π2, . . . , πk−1, ρk−1, πk.

The vertex v0 is a starting vertex, thus I ′′0 ∈ v0 is a starting canonical information

state, therefore π is a canonical schedule. Finally, vk is a goal vertex, thus I ′k ∈ vk

is a goal canonical information state, so π represents a winning canonical schedule.

In Lemma 5 we showed how to transform a winning canonical schedule into a

winning finite schedule, however, we have not described how to construct a winning

canonical schedule, given only the polygon P . We do this in the next section.

4. Algorithm for finding a finite search schedule

We now provide an algorithm which, given P , first constructs the information state

graph G and then performs a breadth-first search in G to find a winning finite

schedule. If for a given polygon P and graph G such a schedule exists, it will serve

as a description of a winning strategy for the two pursuers. The running time of

the algorithm is O(m4 + m2n + n2) where n is the number of edges and m is the

number of concave regions of the polygon.

In order to construct the graph G, it is sufficient to construct the vertex set

V (G) and the edge set E(G). In the next sections we provide details for both

constructions.

4.1. Constructing V (G)

In this section, we describe how to construct V (G), given the parameters of all the

O(m2) VHC boxes defined by the critical points. Since the parameters of each box
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will be used in O(m2) different computations, it is helpful to precompute them.

Suppose p ∈ ∂P is a critical point. By constructing the visibility polygon for p,

we can identify all pairs (q1, q2) such that (q1, q2) corresponds to a (left or right)

gap edge relative to p. We define the pairs in {(p, q1), (p, q2), (q1, p), (q2, p)} ∩ X ,

to be critical gap configurations.
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Fig. 8. Part (a) represents a polygon in which the critical points and the endpoints of the corre-
sponding gap edges are drawn as white circles. The bitangents are drawn as dashed lines and the
bitangent points are drawn as black circles. Part (b) represents the VOD of the polygon with the
critical gap configurations drawn as white circles and the bitangent configurations drawn as black
circles.

Let c, d ∈ ∂P be mutually visible vertices and x ∈ P be an interior point of the

segment cd. If there exist points c′, d′ ∈ ∂P such that the pairs (c, c′) and (d, d′)

form gap edges relative to x, we say that c and d define a bitangent. We call c,

d, c′ and d′ bitangent points. For example, consider Figure 8(a) and let c = 2,

d = 16, c′ = k, d′ = h and let x be the midpoint of the segment 2, 16. Relative to x,

the pairs (2, k) and (16, h) form a right and left gap edges, respectively, therefore

2, 16, h and k are bitangent points. If p, q ∈ {c, d, c′, d′} and p 6= q we define the

pair 〈p, q〉 ∈ X as a bitangent configuration.

Lemma 6. For a polygon with n edges and m concave regions, the parameters of

all VHC boxes defined by the corresponding critical grid can be precomputed in a

2m×2m matrix in O(n2) time. Thus, given the matrix and α, β ∈ Z2m, in constant

time we can determine the critical intervals, Rα and Rβ, and the parameters of the

VHC box B(X, Y ), where X ⊆ Rα and Y ⊆ Rβ, if such a box exists.
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Proof. The lemma summarizes the discussion so far: every extreme point of a VHC

box is either a bitangent configuration or a critical gap configuration. By traversing

the boundary, in O(n) time we can construct a vector of size 2m which stores

the critical points, i.e., the endpoints of the critical intervals R0, R1, . . . , R2m−1.

For each critical point in O(n) time we can construct the corresponding visibility

polygon which determines the critical gap configurations. So the time to determine

the critical gap configurations for all critical points is O(n + 2mn) = O(mn).

In order to determine the bitangent points, for every vertex pi of P we can

compute the visibility polygon of pi in O(n) time 19,20,21. Since there are n vertices,

the total time to determine the bitangent configurations is O(n2). Thus the total

time to determine the parameters of all VHC boxes is O(mn + n2) = O(n2).

Lemma 7. For a given polygon, if the parameters of all the boxes are precomputed,

then V (G), the vertex set of the information state graph G, can be constructed in

time O(m4).

Proof. Let v = (α, β, γ, δ, k, d0, d1, b0, b1, b2, b3) be a tuple in which α, β, γ, δ ∈ Z2m

are the indices of critical intervals Rα, Rβ , Rγ , Rδ, while k ∈ Z3 corresponds to the

order, and the di’s and bl’s are the direction and contamination bits correspondingly.

We show how to determine whether v ∈ V (G).

If the parameters of each box are precomputed as described in Lemma 6, then

in constant time we can construct VHC boxes B(X0, Y0) and B(X1, Y1), where

X0 ⊆ Rα, Y0 ⊆ Rβ , X1 ⊆ Rγ , Y1 ⊆ Rδ. If any of the two boxes does not exist, then

v 6∈ V (G), so assume that both boxes exist.

Note that v ∈ V (G) does not depend on the values of the bits di and bl, but

only on the mutual position of the parameters of the boxes, as well as on the

value of k ∈ Z3. Therefore, using Lemma 2 we can determine the existence of a

visibility tuple Iv = (x0, y0, x1, y1, k) ∈ Iv, where (xi, yi) ∈ C(Xi, Yi), i = 0, 1. But

this is equivalent to determining whether there exists a canonical information state

I = (x0, y0, x1, y1, k, d0, d1, b0, b1, b2, b3) ∈ I where (xi, yi) ∈ C(Xi, Yi), which itself

is equivalent to determining whether v ∈ V (G).

To construct the set V (G), we consider all possible choices of α, β, δ, γ ∈ Z2m,

k ∈ Z3, di, bl ∈ Z2. Ignoring di and bl, for each tuple Iv, we can evaluate Equation 1

from Lemma 2 in O(1) time. Since the number of all such tuples is O(m4), the set

V (G) can be constructed in O(m4) time.

4.2. Constructing E(G)

In order to construct the edge set, E(G), of the information state graph G, we

regard E(G) as a (not necessarily disjoint) union of sets of edges:

E(G) =

5
⋃

i=0

Ei ,
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where for 0 ≤ i ≤ 5, Ei ⊂ V (G) × V (G) is set of edges, such that (v0, v1) ∈ Ei if

and only if there is a type i elementary move from a canonical information state in

v0 to a canonical information state in v1.

Before we show how to construct each of the sets Ei, 0 ≤ i ≤ 5, we extend

to vertices the notion of independent VHC boxes from Section 3.1. Consider a

vertex v = (α, β, γ, δ, k, d0, d1, b0, b1, b2, b3) ∈ V (G) with corresponding VHC boxes

B(X0, Y0) and B(X1, Y1), where X0 ⊆ Rα, Y0 ⊆ Rβ, X1 ⊆ Rγ , and Y1 ⊆ Rδ. We

say that v is an independent vertex if B(X0, Y0) and B(X1, Y1) are independent.

Otherwise, v is a dependent vertex.

4.2.1. Constructing E0

The edge corresponds to the completely technical type 0 move, during which we

change the reference point x0 in a tuple. As a result of the move, the order k may

change. Since there is no real motion of the light segments, only a relabeling of

their endpoints, the other elements in the tuple are merely permuted,

Consider vertex v0 = (α0, β0, γ0, δ0, k0, d0
0, d

0
1, b

0
0, b

0
1, b

0
2, b

0
3) ∈ V (G), with cor-

responding VHC box B(X0
0 , Y 0

0 ) and B(X0
1 , Y 0

1 ), where X0
0 ⊆ Rα0 , Y 0

0 ⊆

Rβ0 , X0
1 ⊆ Rγ0 , and Y 0

1 ⊆ Rδ0 . Using Lemma 2, we can construct a tu-

ple I0 = (x0
0, y

0
0, x

0
1, y

0
1 , k

0, d0
0, d

0
1, b

0
0, b

0
1, b

0
2, b

0
3), such that (x0

j , y
0
j ) ∈ B(X0

j , Y 0
j ),

j ∈ {0, 1} and k0 corresponds to the order of x0
0, y0

0 , x0
1, y0

1 . As shown

in Section 2.3, given I0, in constant time we can build a second tu-

ple I1 = (x1
0, y

1
0 , x

1
1, y

1
1 , k

1, d1
0, d

1
1, b

1
0, b

1
1, b

1
2, b

1
3), which is the result of apply-

ing a type 0 move on I0. From I1 in constant time we can build v1 =

(α1, β1, γ1, δ1, k1, d1
0, d

1
1, b

1
0, b

1
1, b

1
2, b

1
3) ∈ V (G), where x1

0 ⊆ Rα1 , y1
0 ⊆ Rβ1 , x1

1 ⊆

Rγ1 , and y1
1 ⊆ Rδ1 .

In order to compute all the edges in E0, we need to consider two cases. There are

O(m4) independent vertices v0 and from each of them we can compute v1 in time

O(1). So the total time for constructing the E0 edges that start from an independent

vertex is O(m4). On the other hand, there are O(m2) dependent vertices v0 and from

each of them we can compute v1 in time O(n). So the total time for constructing

the E0 edges that start from a dependent vertex is O(nm2). Summing up, the total

time to construct E0 is O(m4 + nm2).

4.2.2. Constructing E1

Intuitively, the edges in E1 represent type 1 elementary moves during which pursuer

0 moves continuously, while pursuer 1 is stationary. There are no jumps and the

relative order of the endpoints of the light segments does not change. We are not

interested in the type 1 moves in which pursuer 0 stays within the same grid element.

Instead, we consider the moves in which pursuer 0 crosses between two neighboring

grid elements.

Consider distinct vertices vi = (αi, βi, γ, δ, k, d0, d1, b0, b1, b2, b3) ∈ V (G), i =
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0, 1, and the corresponding VHC boxes B(X0
0 , Y 0

0 ), B(X1
0 , Y 1

0 ) and B(X1, Y1),

where X0
0 ⊆ Rα0 , Y 0

0 ⊆ Rβ0 , X1
0 ⊆ Rα1 , Y 1

0 ⊆ Rβ1 , X1 ⊆ Rγ , and Y1 ⊆ Rδ.

(To avoid tedious technicalities, i.e., a change in k, assume also that α0 6= β1.)

If B(X0
0 , Y 0

0 ) and B(X1
0 , Y 1

0 ) are not boxes from neighboring grid elements, then

(v0, v1) 6∈ E1. Therefore, we do not have to consider all possible pairs of vertices

v0, v1 ∈ V (G). Instead, for each of the O(m4) possible choices of v0 ∈ V (G), there

are O(1) possible choices for v1 which satisfy the “neighboring grid element” con-

dition. So the total of pairs (v0, v1) which we have to consider as condidates for E1

is O(m4).

Denote by s1, s4 the (vertical or a horizontal) grid segment that B(X0
0 , Y 0

0 ) and

B(X1
0 , Y 1

0 ) share. If s1, s4∩Xv = ∅, then (v0, v1) 6∈ E1. So assume that s1, s4∩Xv 6= ∅

and let s2, s3 be the maximal subsegment of s1, s4 whose interior lies entirely in Xv.

There exists a sufficiently small VHC box B(X, Y ) whose interior contains s2, s3.

We apply Lemma 2 for k, B(X, Y ) and B(X1, Y1) as defined above. If Condition

1 from the lemma is not satisfied, then (v0, v1) 6∈ E1. On the other hand, suppose

that the condition is satisfied by some Iv = (x0, y0, x1, y1, k) ∈ Iv. From the defi-

nition of B(X, Y ), it follows that Iv ∈ Iv if and only if there are points (xi
0, y

i
0) ∈

B(X i
0, Y

i
0 ), sufficiently close to (x0, y0), so that Ii

v = (xi
0, y

i
0, x1, y1, k) ∈ Iv, i = 0, 1.

This is equivalent to the existence of a type 1 move between canonical informa-

tion states Ii = (xi
0, y

i
0, x1, y1, k, d0, d1, b0, b1, b2, b3) ∈ I, i = 0, 1, i.e., equivalent to

(v0, v1) ∈ E1.

It follows that determining whether (v0, v1) ∈ E1 is equivalent to evaluating

Condition 1 from Lemma 2. The condition can be verified and Iv can be constructed

in constant time for independent vertices v0 and v1 and in time O(n) for dependent

ones. There are O(m4) different independent boxes and O(m2) dependent ones, so

to construct the edges in E1 we need time O(m4 + nm2).

4.2.3. Constructing E2

Intuitively, a type 2 edge represents a moment during which pursuer 0 clears the

corner corresponding to a non-reflex vertex while pursuer 1 is stationary.

Consider vi = (α, β, γ, δ, k, d0, d1, b
i
0, b

i
1, b

i
2, b

i
3) ∈ V (G), i = 0, 1 with corre-

sponding boxes B(X0, Y0) and B(X1, Y1), where X0 ⊆ Rα, Y0 ⊆ Rβ , X1 ⊆ Rγ ,

Y1 ⊆ Rδ. If neither of B(X0, Y0) or B(X1, Y1) contains a non-reflex vertex, then

(v0, v1) 6∈ E2. So assume that there is a non-reflex vertex p ∈ ∂P which belongs

to one of the boxes. Let p−, p+ ∈ ∂P , p ∈ ∂P (p−, p+) and also define the intervals

X = ∂P (p−, p) and Y = ∂P (p, p+). Let ∂P (p−, p+) be sufficiently small so that

B(X, Y ) = C(X, Y ) ⊆ Xv is a VHC core. Without loss of generality, possibly after

some relabeling, we can assume that p ∈ B(X1, Y1) and neither of X or Y over-

laps with X0 or Y0. Suppose that (x0, y0) is an arbitrary point from C(X0, Y0). If

pursuer 0 is stationary at (x0, y0) while pursuer 1 converges from (p−, p+) to (p, p),

this corresponds to a type 2 move, as described in Section 2.3.

Given B(X, Y ) and B(X1, Y1), in constant time we can construct Ii =
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(x0, y0, p
−, p+, k, d0, d1, b

i
0, b

i
1, b

i
2, b

i
3), i = 0, 1. Using I0 and I1 in constant time

we can determine whether (v0, v1) ∈ E2 by just verifying that the contamination

bits bi
0, bi

1, bi
2, bi

3, i = 0, 1, are consistent with the bit changes for a type 2 move

between I0 and I1.

In order to construct the entire E2, we consider every pair of critical intervals

Rα, Rβ ∈ Z2m, every reflex vertex pi ∈ Zn, as well all the possible choces for k,

b0, b1, d0, . . . d3. Given those, there is a unique choice of B(X, Y ) and B(X0, Y0),

and therefore of (v0, v1) as described above. Since membership (v0, v1) ∈ E2 can be

decided in constant time, it follows that the total time to construct E2 is O(nm2).

4.2.4. Constructing E3

Intuitively, an edge in E3 corresponds to a type 3 move between canonical infor-

mation states. The motion of each of the pursuers is continuous, all within the

corresponding VHC core. The order k changes and there is a possible change in the

contamination bits.

Consider vi = (α, β, γ, δ, k, d0, d1, b
i
0, b

i
1, b

i
2, b

i
3) ∈ V (G), i = 0, 1 with correspond-

ing boxes B(X0, Y0) and B(X1, Y1), where X0 ⊆ Rα, Y0 ⊆ Rβ , X1 ⊆ Rγ , Y1 ⊆ Rδ.

If none of X0 or Y0 intersects with X1 or Y1, then there can be no overlap between

the endpoints of the light segments, thus there can be no type 3 elementary move

and (v0, v1) 6∈ E3. So without loss of generality, possibly after some relabeling, we

can assume that Y0 ∩X1 6= ∅. Choose x0, y0, y1 ∈ ∂P , such that y0 ∈ Y0 ∩X1, also

(x0, y0) ∈ C(X0, Y0), (y0, y1) ∈ C(X1, Y1). Since Y0 ∩ X1 is a nonempty open set

there exists a sufficiently small interval ∂P (x1
1, x

0
1) ⊂ Y0 ∩ X1, with the property

that y0 ∈ ∂P (x1
1, x

0
1) and also that the entire segment between the points (x1

1, y1)

and (x0
1, y1) lies in C(X1, Y1). If pursuer 0 is stationary at (x0, y0), while pursuer

1 moves from (x0
1, y1) over (y0, y1) to (x1

1, y1), this corresponds exactly to a type 3

move, as described in Section 2.3.

To determine whether (v0, v1) ∈ E3, we just have to verify that the contami-

nation bits bi
0, bi

1, bi
2, bi

3, i = 0, 1, are consistent with the bit changes for a type 3

move. More precisely, let Ii = (x0, y0, x
i
1, y1, k, d0, d1, b

i
0, b

i
1, b

i
2, b

i
3), i = 0, 1. In con-

stant time we can determine whether there is a type 3 move between I0 and I1. If

given α, β, γ, δ, k and the bits, then v0 and v1 can be constructed and membership

in E3 can be determined in constant time. There are O(m4) possible values for α,

β, γ, δ, k and the bits, so the total time to construct E3 is O(m4).

4.2.5. Constructing E4 and E5

Intuitively, the edges in E4 and E5 correspond to the type 4 and 5 jump elementary

moves. For every elementary move, given the original canonical information state

I0 and the type of the move we can construct the resulting canonical information

state I1. Thus our main goal is to determine whether there is a feasible jump

between the corresponding visibility tuples I0
v and I1

v . If the latter jump exists, we
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can determine in constant time whether there is a type 4 or type 5 jump between

the corresponding information states I0 and I1.

b

c

a

a

b

c

(2,2) (1,2)

(0.2)
(0,1)

(0,0)

(1,1)

(0,0)(1,1)
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(a) (b)

Fig. 9. (a) Tangent defined by points a, b and c. (b) Corresponding configurations in X . The points
in Xv are white, the points in X − Xv are grey.

Consider a tangent defined by the points a, b, c ∈ ∂P , see Figure 9(a). The

tangent induces two corresponding jumps in X : a jump from (a, b) to (a, c) is a

jump over a left gap edge represented a horizontal segment and a jump from (c, b)

to (c, a) is a jump over a right gap edge, represented as a vertical segment, see

Figure 9(b). Just as in the definition of the type 4 and type 5 elementary moves,

we will only discuss the jumps over left gap edges. The jumps over right gap edges

are analogous, e.g., they can be constructed by considering a mirror image of the

polygon.

Suppose pursuer 0 performs a jump over a gap edge from (a, b) to (a, c), such

that x0 = a, y0
0 = b and y1

0 = c. The points a, b, c ∈ ∂P induce a partition of Xv into

six regions (k0, k1), 0 ≤ k0 ≤ k1 ≤ 2, where every region (k0, k1) contains all the

points (x1, y1) such that there exist Ii
v = (x0, y

i
0, x1, y1, k

i), i = 0, 1. Intuitively, the

visibility tuples I0
v and I1

v denote a move in which pursuer 0 is making a jump from

x0, y
0
0 to x0, y

1
0 , while pursuer 1 is stationary at (x1, y1). Region (k0, k1) denotes all

the positions of pursuer 1, such that the order of the I0
v is k0 and the order I1

v is

k1, see Figure 9(b).

Clearly, if we fix x0, y0
0 and y1

0 and we are also given the VHC box of (x1, y1), in

constant time we can determine the feasibility of a jump. However, since the number

of possible positions for x0, y0
0 and y1

0 is infinite, our next goal is to partition all

the jump moves into a finite number of classes.

Consider critical intervals Rα, Rβ0 , Rβ1 and let B(X0, Y
0
0 ) and B(X0, Y

1
0 ) be the

corresponding VHC boxes where X0 ⊆ Rα, Y 0
0 ⊆ Rβ0 , Y 1

0 ⊆ Rβ1 . Let (x′

0, x
′′

0 ) ⊆ X0

be a maximal interval with the property that for every x0 ∈ (x′

0, x
′′

0 ), there is a

jump from (x0, y0) ∈ C(X0
0 , Y 0

0 ) to (x0, y1) ∈ C(X1
0 , Y 1

0 ). We define (x′

0, x
′′

0) to be
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a jump interval and we use it to group together equivalent jumps from B(X0
0 , Y 0

0 )

to B(X1
0 , Y 1

0 ). For two given boxes as defined above a jump interval (x′

0, x
′′

0 ) may not

exist or may not be unique, yet its boundaries always correspond to either bitangent

or critical gap configurations. Therefore, since each such point can border at most

two intervals and the number of both the bitangent configurations and the critical

gap configurations is O(m2), it follows that the number of jump intervals is also

O(m2).
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Fig. 10. Jump interval and partition of X into regions of different labels.

Let vi = (α, βi, γ, δ, ki, di
0, d

i
1, b

i
0, b

i
1, b

i
2, b

i
3), i = 0, 1 be vertices in V (G) with

corresponding boxes B(X0, Y
0
0 ), B(X0, Y

1
0 ) and B(X1, Y1), where X0 ⊆ Rα, Y 0

0 ⊆

Rβ0 , Y 1
0 ⊆ Rβ1 , X1 ⊆ Rγ , Y1 ⊆ Rδ. Assume that (a′, a′′) is a jump interval for

boxes B(X0, Y
0
0 ) and B(X0, Y

1
0 ). Suppose that b′, b′′, c′ and c′′ are such that there

is a jump from (a′, b′) to (a′, c′) and also a jump from (a′′, b′′) to (a′′, c′′) and let

x0 ∈ (a′, a′′), y0
0 ∈ (b′′, b′) and y1

0 ∈ (c′, c′′) by such that there is a jump from (x0, y
0
0)

to (x0, y
1
0) as shown in Figure 10(a). Figure 10(b) illustrates the corresponding VOD

Xv. The white points correspond to the points in Xv. The shaded points are the

ones in X − Xv. The trapezoid which is shaded darker represents all the different

jumps for the given jump interval. The lines corresponding to the boundaries of the

intervals Rα, Rβ0 and Rβ1 , shown as thicker lines in Figure 10(b), are part of the

grid and divide X into regions labeled with X, A, B, C and D. Note that there are

no points from Xv in a region labeled X, so B(X1, Y1) has to be in one of the other

four. If B(X1, Y1) lies in a region labeled A or B, then we can determine in constant

time whether there exist I0
v and I1

v and a corresponding type 4 (resp. type 5) move
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between them, and we can determine in constant time whether (v0, v1) ∈ E4 (resp.

∈ E5). On the other hand, if B(X1, Y1) lies in a region labeled C or D, we need to

construct a finite number of visibility polygons (similar to the proof of Lemma 2)

to determine membership in E4 and E5.

What is the time needed to construct E4 and E5? For a fixed jump interval

the intervals Rβ , Rβ0 and Rβ1 are fixed as well. There are O(m2) possible choices

for Rγ and Rδ. Since there are O(m2) boxes B(X1, Y1) which lie in regions labeled

A or B and determining the existence of an edge for each one takes O(1) time,

the total time for those is O(m2). On the other hand, there are O(1) boxes which

lie in a region labeled C or D and each one takes O(n) time, so the total time

for the C and D regions is O(n). Thus, for a single jump interval the time is

O(m2 + n). There are O(m2) jump intervals so the total time to construct E4 and

E5 is O(m2(m2 + n)) = O(m4 + nm2).

4.3. Finding a winning finite schedule

We can precompute the bitangent and critical gap configurations in O(n2) time.

Given this precomputation, we can construct the graph G in time O(m4 + m2n).

Finally, we can run breadth-first search in the graph to find a winning finite sched-

ule. The size of the vertex set, V (G), is O(m4). The size of the edge sets E0, E1,

E2 and E3 is also O(m4) since every vertex in V (G) has a constant outdegree for

each of those edge sets. Finally, the size of the edge sets E4 and E5 is O(m4) as

well, since there is a constant number of edges for every jump interval and box

B(X1, Y1). Thus, the size of E(G) is O(m4); therefore, bread-first search in G will

take O(m4) time.

It follows that determining the existence and constructing a winning finite sched-

ule can be done in time O(n2 + nm2 + m4).

5. Conclusion

We presented a complete algorithm for a pair of pursuers, each with one rotating

flashlight, searching for an moving target in a simple polygon. For a polygon with

n edges and m concave regions, the algorithm in time O(n2 + nm2 + m4) decides

whether it can be cleared by the pursuers, and if so, constructs a search schedule.

The algorithm can be implemented and embedded on any moving devices with uni-

directional vision (flashlights, lasers, or cameras). A natural direction for extending

the current results is designing a similar algorithm for two pursuers with 360◦ vi-

sion. A more ambitious goal is to provide an algorithm for searching a polygon

without holes using any number of pursuers. Another interesting problem is com-

bining the results of our paper with the minimal sensing approach of Sachs et al,22

i.e., whether the two pursuers can find a winning strategy without prior knowledge

of the shape of the polygon.
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Appendix A. Proof of Lemma 2

Assume that X0, Y0, X1, Y1 and k are as defined in Lemma 2. Also, for convenience,

assume that we order the points of ∂P starting from x0, the left boundary of the

interval X0. We breakdown the proof according to the different values of k, where

0 ≤ k ≤ 2:

A.1. Proof of Lemma 2 for the case k = 0

We prove that if k = 0, then Condition 1 is satisfied if and only if x0 ≺ y0 ≺ x1.

Proof.

(⇐) For the sake of contradiction, assume that x0 ≺ x1 � y0. It follows that for

every (xi, yi) ∈ B(Xi, Yi), i = 0, 1:

x0 � x1 � x1 � y0 ≺ y0 ,

so if x0 ≺ x1 � y0, then Condition 1 cannot be satisfied.

(⇒) Suppose that x0 ≺ y0 ≺ x1. Let (x∗

0, y0) and (x1, y
∗

1) be two extreme points

of C(X0, Y0) and C(X1, Y1), correspondingly. Since,

x0 ≺ x∗

0 ≺ y0 ≺ x1 ≺ y∗

1

the tuple Iv = (x∗

0, y0, x1, y
∗

1 , 0) satisfies Condition 1.

Both the check x0 ≺ y0 ≺ x1 and the construction of Iv can be done in O(1)

time, regardless of the whether the boxes are independent or not.

A.2. Proof of Lemma 2 for the case k = 1

We consider three cases, depending on the mutual position of the boxes.
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A.2.1. Case with k = 1, X0 ∩X1 6= ∅ and Y0 ∩ Y1 6= ∅

We prove that if k = 1, X0 ∩X1 6= ∅ and Y0 ∩ Y1 6= ∅, then Condition 1 is always

satisfied.

Proof. Let X = X0 ∩X1 6= ∅ and Y = Y0 ∩ Y1 6= ∅. From Lemma 3.9 of Ref. 18 it

follows that B(X, Y ) is a VHC box. Consider an interior point (x∗

0, y
∗

0) ∈ C(X, Y ) ⊆

C(X0, Y0). Suppose we move in X from point (x∗

0, y
∗

0) down and to the right to point

(x∗

1, y
∗

1). Assume that the move is sufficiently short, so that (x∗

1, y
∗

1) ∈ C(X, Y ) ⊆

C(X1, Y1). From the direction of the move it follows that x0 ≺ x∗

0 ≺ x∗

1 ≺ y∗

0 ≺ y∗

1 ,

so Condition 1 is always satisfied by tuple Iv = (x∗

0, y
∗

0 , x∗

1, y
∗

1 , 1).

Determining whether Condition 1 can be satisfied, or equivalently, whether sets

X and Y are empty can be done in O(1) time. In order to construct Iv, we compute

the parameters of B(X, Y ) by computing a finite number of visibility polygons in

O(n) time. Given the parameters of B(X, Y ) we can construct Iv in O(1) time.

A.2.2. Case with k = 1, X0 ∩ (X1 ∪ Y1) = ∅, Y0 ∩X1 6= ∅ and Y0 ∩ Y1 6= ∅

We prove that if k = 1, X0 ∩ (X1 ∪ Y1) = ∅, Y0 ∩X1 6= ∅ and Y0 ∩ Y1 6= ∅, then

Condition 1 is always satisfied.

Proof. Pick y∗

1 ∈ Y0∩Y1 and construct a point (x∗

1, y
∗

1) ∈ C(X1, Y1). Pick y∗

0 ∈ ∂P

such that x∗

1 ≺ y∗

0 ≺ y∗

1 and y0 ≺ y∗

0 ≺ y∗

1 . Construct (x∗

0, y
∗

0) ∈ C(X0, Y0). Since

x0 ≺ x∗

0 � x0 ≺ x1 � x∗

1 ≺ y∗

0 ≺ y∗

1

the tuple Iv = (x∗

0, y
∗

0 , x∗

1, y
∗

1 , 1) satisfies Condition 1.

In order to construct (x∗

0, y
∗

0) and (x∗

1, y
∗

1) we need to construct two visibility

polygons. So Iv can be constructed in time O(n).

A.2.3. Case with k = 1, X0 ∩ (X1 ∪ Y1) = ∅ and Y0 ∩ Y1 = ∅

We prove that if k = 1, X0 ∩ (X1 ∪ Y1) = ∅ and Y0 ∩ Y1 = ∅, then Condition 1 is

satisfied if and only if x0 ≺ x1 ≺ y0.

Proof.

(⇐) For the sake of contradiction, assume that x0 ≺ y0 � x1. It follows that for

every (xi, yi) ∈ B(Xi, Yi), i = 0, 1:

x0 ≺ y0 � y0 � x1 � x1 ,

so if x0 � y0 � x1, then Condition 1 cannot be satisfied.

(⇒) Suppose that x0 � x1 ≺ y0. Let (x∗

0, y0) and (x1, y
∗

1) be two extreme points

of C(X0, Y0) and C(X1, Y1), correspondingly. Since,

x0 ≺ x∗

0 � x0 ≺ x1 ≺ y0 ≺ y1 ≺ y∗

1
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the tuple Iv = (x∗

0, y0, x1, y
∗

1 , 1) satisfies Condition 1.

Both the check x0 ≺ x1 ≺ y0 and the construction of Iv can be done in O(1)

time, regardless of the whether the boxes are independent or not.

A.3. Proof of Lemma 2 for the case k = 2

We consider two cases, depending on the mutual position of the boxes.

A.3.1. Case with k = 2, X0 ∩X1 6= ∅ and Y0 ∩ Y1 6= ∅

We prove that if k = 2, X0 ∩X1 6= ∅ and Y0 ∩ Y1 6= ∅, then Condition 1 is always

satisfied.

Proof. Let X = X0 ∩X1 6= ∅ and Y = Y0 ∩ Y1 6= ∅. From Lemma 3.9 of Ref. 18 it

follows that B(X, Y ) is a VHC box. Consider an interior point (x∗

0, y
∗

0) ∈ C(X, Y ) ⊆

C(X0, Y0). Suppose we move in X from point (x∗

0, y
∗

0) down and to the left to point

(x∗

1, y
∗

1). Assume that the move is sufficiently short, so that (x∗

1, y
∗

1) ∈ C(X, Y ) ⊆

C(X1, Y1). From the direction of the move it follows that x∗

0 ≺ x∗

1 ≺ y∗

1 ≺ y∗

0 , so

Condition 1 is always satisfied by tuple Iv = (x∗

0, y
∗

0 , x∗

1, y
∗

1 , 2).

Determining whether Condition 1 can be satisfied, or equivalently, whether sets

X and Y are empty can be done in O(1) time. In order to construct Iv, we compute

the parameters of B(X, Y ) by computing a finite number of visibility polygons in

O(n) time. Given the parameters of B(X, Y ) we can construct Iv in O(1) time.

A.3.2. Case with k = 2, X0 ∩X1 = ∅

We prove that if k = 2 and X0 ∩X1 = ∅, then Condition 1 is satisfied if and only

if x0 ≺ y1 ≺ y0.

Proof.

(⇐) Suppose that x0 ≺ y0 � y1. It follows that for every (xi, yi) ∈ B(Xi, Yi),

i = 0, 1:

x0 ≺ y0 � y0 � y1 � y1 ,

so if x0 ≺ y0 � y1, then Condition 1 cannot be satisfied.

(⇒) Suppose that x0 ≺ y1 ≺ y0. Let (x∗

0, y0) and (x∗

1, y1) be two extreme points

of C(X0, Y0) and C(X1, Y1), correspondingly. Since,

x0 ≺ x∗

0 � x0 ≺ x1 � x∗

1 ≺ y1 ≺ y0

the tuple Iv = (x∗

0, y0, x
∗

1, y1, 2) satisfies Condition 1.

Both the check x0 ≺ y1 ≺ y0 and the construction of Iv can be done in O(1)

time, regardless of the whether the boxes are independent or not.


