A Pursuit-Evasion BUG Algorithm

Stjepan Rajko

Steven M. LaValle

Dept. of Computer Science
Iowa State University

Ames, TA 50011 USA
{srajko, lavalle}@cs.iastate.edu

Abstract

We consider the problem of searching for an unpre-
dictable moving target, using a robot that lacks a map
of the environment, lacks the ability to construct a
map, and has imperfect navigation ability. We present
a complete algorithm, which yields a motion strategy
for the robot that guarantees the elusive target will be
detected, if such a strategy exists. It is assumed that
the robot has an omnidirectional sensing device that is
used to detect moving targets and also discontinuities
in depth data in a 2D environment. We also show
that the robot has the same problem-solving power as
a robot that has a complete map and perfect naviga-
tion abilities. The algorithm has been implemented in
simulation, and some examples are shown.

1 Introduction

In the past few years, there has been significant in-
terest in robotics and computational geometry in de-
signing motion strategies for pursuit-evasion scenar-
ios. The basic task is to move one or more robots
(pursuers) to guarantee that unpredictable targets
(evaders) will be detected using visibility-based sen-
sors. Efficient algorithms that compute these strate-
gies can be embedded in a variety of robotic systems
to locate other robots and people. Potential applica-
tion areas include surveillance, high-risk military op-
erations, video game design, search-and-rescue efforts,
firefighting, and law enforcement.

This paper presents the first approach to visibility-
based pursuit-evasion that does not require a complete
map of the environment to be specified a priori. In-
stead, we adopt the minimalist philosophy presented
in [12] for robot navigation. In that work, BUG al-
gorithms were presented for navigating a robot to a
goal, in the absence of a map and with very limited
sensing. The robot is assumed to have very simple
capabilities, such as contact sensing and wall follow-
ing; yet, it is guaranteed to reach its destination effi-
ciently. In recent years, other navigation algorithms
have been designed using this philosophy [3, 7, 8, 15].
This mind set inspires our current work, which applies
these principles to pursuit-evasion problems, resulting

(b)

Figure 1: Discontinuities in depth measurements par-
tition the set of viewing directions. Each discontinuity
could hide an evader.

in a pursuit-evasion BUG algorithm, or PE-BUG for
short. The primary benefit of this approach is that the
sensing requirements of the robot are greatly reduced.
This can lead to lower-cost solutions that ultimately
may achieve greater robustness due to less dependen-
cies on accurate, complicated models.

The pursuit-evasion problem, however, is consider-
ably more complex than basic navigation. To indi-
cate the difficulty of the problem, we briefly summa-
rize previous solutions, which apply to the ideal case in
which the environment is known exactly, and the robot
has perfect motion and sensing capabilities. Visibility-
based pursuit-evasion in a polygonal environment was
first considered in [17], in which incomplete algorithms
were given for cases in which the pursuer that has om-
nidirectional visibility, or has a set of k beams, called
flashlights. A complete algorithm for the case of om-
nidirectional visibility was first presented in [10]. So-
lutions to the case in which the pursuer has one or
more detection beams are considered in [4, 11, 16, 18],
for various types of polygons. A pursuit-evasion algo-
rithm for curved environments was presented in [9]. In
[5], both optimal and approximation algorithms were
presented for the case of a chain of pursuers that main-
tain mutual pairwise visibility in a polygonal environ-
ment. Such challenges with the ideal pursuit-evasion
problem might cause hopes of developing a BUG al-

gorithm dwindle; however, we present an algorithm
which enables the PE-BUG to solve any problem that
could be solved with an ideal pursuer, which has a
complete map and perfect navigation abilities.

2 Problem Definition

The task is for one pursuer robot to visually locate
one or more evaders in a complicated environment.
The pursuer and evaders are each points that move
in a simply-connected open set, R, in the plane. The
boundary of R is a simple, closed, piecewise-smooth
curve with only a finite number of nonsmooth points.
Let e;(t) € R denote the position of the i** evader at
time ¢ > 0. It is assumed that e; : [0,00) = R is
a continuous function, and each evader is capable of
moving at a finite, unbounded speed. For any = € R,
let V(z) C R denote the set of all y € R such that
the line segment that joins x and y does not intersect
the boundary of R. Let V(z) be called the wvisibility
region. Let (t) denote the position of the pursuer at
time ¢ > 0; the pursuer also moves continuously. If at
any time t, e;(t) € V(v(t)), we say that the i'" evader
is detected (and eliminated). In the spirit of [14], any
such subset of R that might contain a evader is referred
to as a contaminated region. If it is guaranteed not to
contain any evaders, then it is referred to as cleared. If
a region is contaminated, becomes cleared, and then
becomes contaminated again, it will be referred to as
recontaminated. It is assumed that the pursuer does
not know the starting position, e;(0), or the path, e;,
of any evader. Initially, each evader could be anywhere
in R that is not visible from ~(0). The task is to ensure
that the pursuer will follow a path that causes all of
R to become cleared.

We now define a simple pursuer model that is in-
spired by BUG algorithms and related paradigms. We
make no assumptions on the pursuer’s initial knowl-
edge of R, or its capability to construct a map, obtain
accurate depth measurements, and perform localiza-
tion. In the interest of robustness, it might be advan-
tageous to avoid such constructions even if the pursuer
is capable. Finally, it is assumed that the pursuer can
execute omnidirectional motions.

Some sensing capability is required, of course, to
solve the problem. Consider Figure 1.a, in which a
pursuer is placed in a curved environment. The pur-
suer is equipped with a sensor that is capable of pro-
ducing a representation as shown in Figure 1.b, which
gives the location of discontinuities in depth informa-
tion. In a sense, Figure 1.b indicates the way the
world appears to the pursuer at all times. Note that
each gap corresponds to a connected portion of R that
is not visible to the pursuer. The precise distances to
the walls may be unknown; however, it is assumed that
the pursuer has a kind of edge detector that can detect
each of the discontinuities, and return their direction
relative to the pursuer’s heading. Each discontinuity
will be referred to as a gap, and the sensor will be

Figure 2: Three situations: a) moving towards a prox-
imity pair; b) moving away from a proximity pair; c)
moving along a wall.

called the gap sensor. It is assumed that the pursuer
can track the gaps at all times, and record any topo-
logical change, which involves the appearance, disap-
pearance, merging, or splitting of gaps.

Given the sensing and knowledge limitations of the
pursuer, special care must be given in specifying a mo-
tion strategy. As in the case of BUG algorithms, we
assume that the pursuer is capable of following arbi-
trarily close to walls. One additional kind of motion
is assumed, and is based entirely on information from
the gap sensor. Consider two gaps, a; and as, which
are observed by the gap sensor, and a fixed small con-
stant, € > 0. While the pursuer moves, it is possible
that |0(a;) — 6(a;)| < €, as shown in the left of Figure
2. We refer to this situation as a prozimity pair. An-
other proximity pair can occur if one gap, a, splits into
two gaps, a1 and as. Let 6(a;,a;) denote the average
direction between a; and a;. If the pursuer is com-
manded to move in directions orthogonal to 6(a;, a;)
(i.e., either 6(a;,a;)+ 5 or 6(a;,a;) — %), the gaps will
either quickly diverge or quickly merge. If the pursuer
is commanded to move in the direction of 6(a;, a;) or
6(ai,a;) + m, the gaps will remain close, but will not
merge. We will assume that a motion command can
be issued to the purser that keeps the gaps within
some small threshold, €, of each other, but does not
allow them to merge (no dynamics are modeled). This
can be accomplished either by moving directly toward
gaps a; and a;, or by moving directly away. Small er-
rors in control can be corrected by using feedback from
the gap sensor to vary the commanded direction.

For convenience, any pursuer motion strategy will
be described in terms of simple primitives, each of
which is terminated by a junction. If the pursuer is
moving along a wall, a junction is encountered when
a proximity pair arises. If the pursuer is moving in
direction 8 or 6 + 7 for a pair of gaps, then a junction
is encountered when a new proximity pair arises, or
the wall is approached.

At each junction, one of four primitive motions is
possible:

F Continue forward with the same heading.

B Move backwards with respect to the current head-
ing

R Move to the right. If the pursuer arrived at a wall,
then it simply follows the wall to the right. Oth-
erwise, the pursuer moves right by a commanded
motion either in the direction towards or against
the new proximity pair.

L Move to the left. This is symmetric to the R
primitive.

We do make a general position assumption, which is
stated in Section 4, that ensures only one proximity
pair is encountered at a time.

Since the pursuer does not have complete informa-
tion, its motion strategy must depend on information
gathered during execution. Section 3 presents an al-
gorithm which tells the robot which primitive motion
to execute, each time it arrives at a junction. If the
problem can be successfully solved, the motion strat-
egy guarantees that each evader will be detected.

3 The PE-BUG Algorithm

The pursuer has the task of detecting all of the
evaders, but it cannot achieve this without accumulat-
ing some knowledge about its environment. Therefore,
the algorithm involves two interleaved processes: ez-
ploring the environment, and envisioning movements
that would lead to the detection of all evaders. The
exploring process involves movement of the robot, and
the construction of a topological representation of the
environment as a graph based on previously-executed
primitive motions. During exploration, the status
of the pursuit is also maintained (i.e., where might
evaders be hiding?). The envisioning process uses the
representation of the environment to determine if the
pursuit-evasion task can be solved using the represen-
tation of the environment so far. If so, then the pur-
suer executes motions that solve the task. If not, then
more exploring is required, and the process contin-
ues. It is possible to do all exploration first, followed
by envisioning; however, we choose to interleave the
processes for efficiency reasons. The pursuer may be
able to solve the problem without exploring the whole
environment.

The navigation graph First, consider a topolog-
ical environment representation that is based on the
perspective of the pursuer and its gap sensor. We
define the navigation graph, G,, by using only the
primitive motions and junctions. Each junction corre-
sponds to a vertex in G,,. An edge exists between two
vertices if one junction can be reached from another
by a single motion primitive. Initially, G,, is unknown
to the pursuer. For clarity, the notation g, will be
used to represent the portion of G,, that is known to
the pursuer at a given time.

The pursuit status As the pursuer moves in its
environment, it uses its gap sensor to keep track of the

status of the pursuit. Recall from Figure 1, that each
gap corresponds to a connected region of R that is not
visible. Initially, any hidden regions might contain an
evader. Eventually, all hidden regions will be cleared.
For each hidden region, a binary label can be used as:
“1” to indicate that the region is contaminated, and
“0” to indicate it is cleared. Let the status, B, denote
a sequence of binary labels, which indicates if each of
the hidden regions is clear or contaminated, while the
pursuer is at a fixed location.

Recall that the pursuer has the ability to track gaps
as it moves. As gaps change, the pursuer must cor-
rectly update the status. There are four possible ways
in which the gaps change [9]: 1) a new gap appears; 2)
an existing gap disappears; 3) two or more gaps merge
into one; 4) a gap splits into two or more gaps. Sup-
pose that one of these events occurred, and B must
be revised to B’ after considering the gap change. If
a gap disappears, a bit simply disappears when going
from B to B'. If a gap appears, then it always re-
ceives a “0” label, because it corresponds to a hidden
region that was previously visible before the event, and
therefore contains no evaders. If several gaps merge
into one, then the corresponding bit in B will be the
logical OR, of the corresponding bits in B’. This is
correct because one contaminated region could spread
to other regions. If one gap splits into several, the
corresponding bits in B’ will each receive the label of
the corresponding bit in B.

Envisioning a solution Suppose for a moment
that G,, is completely known. Using this, a directed
status graph, G4, can be constructed that yields all
possible situations that could be obtained, as a result
of sequences of primitive motions. For each vertex,
v € G, a set of vertices of G5 can be defined. Recall
that each vertex in G, corresponds to a junction that
is visited by the pursuer. There is one vertex in G
for each possible sequence, B, of binary labels that
could be applied to the gaps. Thus, there are 2* ver-
tices in G4 per v € G, in which k is the number of
gaps identified by the gap sensor. Let v; and vs be
two vertices in Gy, and let v; and v} be their corre-
sponding vertices in G,,. A directed edge in G exists
from v; to vy if and only if: 1) there is an edge in
G, from v{ to v}, and 2) the status represented by
v1 would be transformed into the status represented
by v2 when the pursuer moves from v] to vh. Given
the current junction and binary sequence, B, there is
a corresponding vertex in G. If there is a path in G
from this vertex to a vertex for which B =(00 ---0),
then a sequence of primitive motions exists that can
be applied to solve the pursuit problem. Note that the
same junction may have to be visited multiple times,
but each time the status could be different, resulting
in a different vertex in G,.

It was stated previously that G,, is not known to
the pursuer; however, some subgraph g, is revealed

as the environment is explored. Let g, refer to the
subgraph of the G that can be inferred by only ap-
plying binary labels at junctions that correspond to
the vertices in g,,. As the robot explores the environ-
ment, the graph g,, will be extended. The envisioning
process involves extending g to include vertices that
correspond to the new junctions, and then searching
gs for a path from the current vertex in g, to a solution
vertex (with all labels “0”). If a solution is found, the
robot immediately executes the solution. Otherwise,
more exploration is performed.

Exploring a face Note that G,, is a planar, undi-
rected graph, because it is derived from motions in
a planar environment and each motion is reversible.
First, we consider the problem of exploring a single
face of G,,. Suppose that the pursuer is at a junc-
tion, and hence a corresponding vertex of G,,. The
following sequence of motion primitives, (L, L, ..., L),
are issued until the same junction is reached again.
1" Recall that during the execution of the primitive
motions, the status must be maintained.

The global exploration strategy The next step is
to specify the order in which faces are explored. This
exploration must occur in a systematic way to ensure
that whenever a face is encountered a second time, the
pursuer is able to determine that it is not a new face.
Suppose the pursuer starts its exploration at a wall; if
the pursuer is instead in the interior of R, then it can
easily move until it hits a wall. At any given time in
the exploration, we refer to the unexplored faces and
the explored faces. Each iteration will explore a set of
faces. In the first iteration, a single face is explored, to
obtain g,. For any point in the search, let the frontier
vertices refer to the set of all vertices in g, that are
vertices of unexplored faces, called the frontier faces.
In each iteration, the frontier faces are explored in
order, from wall to wall, as shown in Figure 3. In
alternating iterations, they are explored from left to
right, and then from right to left, to reduce the number
of wasted motions. In some iterations, there will be
more than two frontier vertices that correspond to a
wall, which corresponds to a split in the environment.
In these cases, each part of the environment is explored
recursively. After one part is completed, the pursuer
follows the wall to reach the next part.

After each face is explored, an envisioning opera-
tion is performed to determine whether the pursuer
has learned enough of the environment to solve the

IThere are several ways of detecting the return to a junction
along the face boundary. It can drop a marker in the environ-
ment, and detect it upon return (similar to the use of pebbles
in on-line exploration [1]). We have also considered methods
involving the use of a poor odometer, compass (e.g., [2]), or the
analysis of the gap sensor and motion command history. The
completness of such methods, however, remains to be proven.

Figure 3: The exploration strategy ensures that if
a junction is revisited, it is not misinterpreted as a
newly-encountered junction.

problem. If so, then the exploration phase is termi-
nated, and the pursuer executes the computed motion
primitives that lead to the solution.

4 Algorithm Analysis

This section briefly sketches the completeness ar-
guments for the PE-BUG algorithm (the proofs and
definitions are too lengthy to include in detail), and
motivates the choices of motion primitives and explo-
ration strategies. Although the pursuer cannot “see”
the environment, we must consider the environment
to analyze the problem. Recall that R is bounded by
a continuous, piecewise-smooth curve. Consider the
inflections of the boundary, and note that when such
an inflection is crossed a gap will either appear or dis-
appear. We term such a line an appear line.

Similarly, consider the bitangents induced by the
boundary (i.e. all line segments in R that are tangent
to the boundary at two points). Note that crossing
the ’outer’ portions of the bitangent causes two gaps
to merge or split. Therefore, we term such a line a
merge line.

The set of all merge lines induce a partition of R
into cells that have walls and/or merge lines as their
boundaries. Primitive motions towards or against a
proximity pair correspond to following a merge line
closely, on the side where the gaps are split. The gen-
eral position assumption can now be stated: no more
than two appear and/or merge lines intersect at the
same point in the interior or R, and there are no par-
allel, overlapping merge lines. We are currently inves-
tigating the removal of this restriction, and allowing
degenerate environments.

G, can be considered the graph induced by the
pursuer following the boundary and merge lines “close
enough.” We define this “close enough” distance to be
€maz, and define R’ to be the one dimensional subset
of R that includes all points whose minimum distance
from the wall and merge lines (that have the point
on the split side) is €4, Note that the distance at

which the pursuer follows lines can fluctuate as long
as it stays within €,,4,; however, for convenience in
the following discussion, we assume that the pursuer
moves in the skeleton R'.

We now consider several lemmas and theorems, cul-
minating in Theorem 4.7, which establishes the com-
pleteness of the algorithm and that the pursuer has
the same power as a pursuer with a complete map
and perfect navigation abilities.

The following lemma is straightforward to establish:

Lemma 4.1 If there exists a solution path, -y
[0,1] — R, then there exists another solution path ~'
such that v'(0) € R' and v'(1) € R'.

We now use information space concepts, which are
defined formally in [6, 9]. The information state rep-
resents set of all places in which an evader could be
hiding, and is specified in the present context by iden-
tifying the gaps that appear in the gap sensor, and
assigning a binary label to each. The label represents
clear or contaminated, as in the case of the status from
Section 3, which can be considered as the information
states at junctions. Due to appear lines, however, a se-
quence of information states are traversed during the
execution of a primitive motion. The present defi-
nition of information states can be reduced to more
basic information states as described in [6] by defining
equivalence classes; however, we forego this discussion
in this paper.

A partial ordering can be defined on the set of in-
formation states by considering one information state,
M to dominate another, 7, if each involves the same
set of gaps, and for each gap the label for 7, is “0” if
the label for 7, is “0”.

The following lemma is crucial to establishing that
the pursuer can move along R' and have the same
problem-solving ability as if it moved anywhere within
R.

Lemma 4.2 For any path v : [to,t1] = R, such that
~(t) € R' if and only if t € {to,t1}, then there exists a
path ' : [to, t1] = R' such that v'(to) = v(to),7'(t1) =
~(t1), and the information state at v'(t1) dominates
the information state at y(t1) (this means that execut-
ing v will clear all gaps cleared by executing ', while
not contaminating any gaps that executing vy does not
contaminate).

Sketch of Proof: Due to the nature of 7, we can
see that either v goes between R’ and OR, or there
exists a simple closed loop L C R', such that both
~(to) and ~y(t1) are on points in L, and +(¢) is in the
interior of L for tg < t < t;. Then we know that v(#1)
can be reached through R', but we still need to show
that it can be done in a way that produces a dominant
information state.

In the first case, the lemma follows from the fact
that following OR closer than €,,,,; is equivalent to

following at €,,4, In the other case, first suppose that
L is composed of line segments surrounding n merge
lines by ... b, enumerated clockwise, and with v(to) di-
rectly outside by (there is also another case, in which
~(to) is outside both by and by, and the proof is a sim-
ple extension of the treatment given below). Recall
that due to our definition of R', ’surrounding’ means
that if a pursuer moves from any point in L towards
the inside of L, a pair of gaps will merge (recall that
a cleared gap can only be contaminated if it merges
with a contaminated gap). If the pursuer starts mov-
ing from (to) along L clockwise, the first critical gap
change (ignoring appear line crossings) will be a split,
Sa, caused by crossing b2, followed by a merge, My,
caused by crossing b;. Using the same notation, going
all the way around L would cause critical gap changes
So, My, S3,Ms,...,M,,S; in precisely that order. If
it were the case that the part of L we supposed was
outside b; was actually following a part of OR or the
merge line corresponding to b; was outside L, the pair
of gap changes S;, M; would simply never occur. Note
that throughout this sequence of gap changes, the only
time information can be lost is at M, if it is triggered.
This is because prior to every other merge, there was
already a split, and between the two there can be no
gap changes that will contaminate any of the newly-
split gaps, which means that the merged gap will not
be contaminated unless it was contaminated before
the split.

There are two cases. First, if v triggers M; then
the pursuer can start from «(tp), safely go all the way
around L, and then continue around L to reach y(t1).
Going all the way around L, the pursuer will cross all
appear lines that intersect L, and therefore clear all
gaps that executing v would have cleared. Also, if do-
ing so caused contamination upon crossing Mj, then
executing v would have also caused the same contami-
nation. Second, if v does not trigger M7, then the pur-
suer can start from «(#g), visit all points on L that can
be reached without triggering M;, and then continue
around L to (t1). This path will cross all appear lines
that v crosses, and therefore clear all gaps executing
v would have cleared. In either case, upon reaching
~(t1) we have ensured that a dominant information
state will be obtained.]

Lemmas 4.1 and Lemmas 4.2 can be used to estab-
lish the following, which indicates the power of the
PE-BUG:

Theorem 4.3 A robot capable of navigating only
through G,, can clear any clearable region R.

It remains to show that G, can be determined us-
ing the exploration strategy given in Section 3, and
that it can be successfully searched for a solution if
one exists. Each gap exists because of an appear line,
and the key difficulty is ensuring that whenever the

Figure 4: A simple computed example.

purser sees a gap for the second time, it is not con-
fused as a new gap. In other words, there are different
places during navigation in which gaps detected by the
gap sensor share the same appear line. This means
that they correspond to the same hidden region of R,
and it is essential for the pursuer to recognize this
to have the same power as the pursuer with a com-
plete map. Once the correct correspondences between
gaps is determined, the proper information state can
be computed by the pursuer. This leads to correct
computations of the status, which enables to pursuer
to correctly execute the envisioning phase.

The exploration strategy shown in Figure 3 was de-
signed to satisfy the following lemma:

Lemma 4.4 During the global exploration, the
boundary of every newly-explored face contains one
chain of edges in gy, and one chain of new edges.

Along the current face, the edges in g,, border faces
known to the pursuer, and the remaining edges iden-
tify unexplored faces. This avoids the problem of hav-
ing to deciding for each edge that borders an unknown
face whether or not it already exists in g,,.

Lemma 4.5 During the exploration of o face, gaps
that share the same appear line can be identified, or
all gaps will be cleared.

Lemma 4.5 ensures that gaps are identified cor-
rectly within a face, and Lemma 4.4 can be used to
ensure that corresponding appear lines between gaps
that appear in different faces are correctly identified.
This leads to the following theorem:

Theorem 4.6 All correspondences between gaps are
determined correctly in the exploration of R.

This implies that information states are correctly
handled during the entire exploration. Theorems 4.3
and 4.6 can be used in establishing the following fol-
lowing theorem, which concludes this section.

Theorem 4.7 The algorithm correctly solves any
pursuit-evasion problem that could be solved by a pur-
suer that uses a complete algorithm on an environment
with a complete map and perfect navigation abilities.

5 Implementation and Simulations

The algorithm has been implemented in C++ us-
ing the LEDA library, on a 1000MHz Linux PC. In
the implementation, we assumed that the pursuer is
placed in an environment that is bounded by a simple
polygon. All motions, however, are determined using
information only from a simulated gap sensor. The al-
gorithm successfully computed results for several ex-
amples. A very simple example, shown in Figure 4,
starts out with the robot at point marked “X” facing
north. It has no map of the environment, but its sen-
sor information reveals that there are three ways to go:
following the wall forwards or backwards, and moving
towards the proximity pair to its left. The exploration
starts by going forward, and issuing left turns until the
“X” is reached again (see the solid arrowed lines in fig-
ure). Gap events are monitored along the way, and the
result is a face in g, with edges parametrized to reflect
gap events, which allows the first pass of envisioning
to run (which yields no solution, at this point). There
are now two unknown edges in g,: one from “X” go-
ing down, and one from the junction to the left of “X”
going left. The robot continues by exploring the face
containing those edges (dotted lines in figure), and in
doing so clears the region. A second pass of envision-
ing would now find a solution, but this is not necessary
as the problem has already been solved.

Two other examples are shown in Figure 5. The
first example has 15 faces, and has been solved by the
algorithm in 1 second. The second has 61 faces, and
took 13 seconds to compute. In the second example,
the pursuer is required to recontaminate the top por-
tion of the environment multiple times. These motions
were determined by the envisioning phase. We believe
the execution times can be substantially reduced be-
cause at the present time our implementation is poorly
optimized. In an implementation on a real robot, time
must be allotted for the actual robot motions as it ex-
plores the environment, which also enables more com-
putation time in solving the pursuit evasion problem.

6 Conclusions

We have presented and implemented a complete al-
gorithm for the PE-BUG, which enables it to solve
any problem that could have been solved by a pursuer
that has a complete map and perfect navigation capa-
bilities. The PE-BUG relies entirely on wall-following
capability and the ability to move in the direction of
proximity pairs, which are based on its target detec-
tion sensor. Although in its current form, the algo-
rithm is not ready to implement in a mobile robot,

(a)

Figure 5: Two more-challenging environments that
were correctly solved by the PE-BUG. The faces are
shown.

it removes many unnecessary components from pre-
vious, idealized models. We believe this will enable
the development of low-cost robots that can complete
pursuit-evasion tasks with a high degree of robustness
and autonomy because the pursuit-evasion strategies
determined by our algorithm not depend on compli-
cated environment models, which are often difficult
or impossible to construct with great accuracy. We
imagine that a PE-BUG mobile robot might one day
be taken “from the box”, be placed in an unknown
environment, and be able to systematically search for
all moving targets.

The completion of this work raises many interesting
and challenging questions. For example, we make no
claims that the number of primitive motions executed
by the pursuer is optimal. In competitive analysis [13]
one usually bounds the performance disadvantage of
having limited information, in comparison to the ideal
information case. Constructing a similar bound for
the PE-BUG remains a considerable challenge. It is
also interesting to consider extensions to pursuers that
have other evader-detection and sensing models. For
example, the pursuer might have limited distance per-
ception, or might carry a finite collection of beams for
detecting evaders. To handle more-complicated envi-
ronments, it will be necessary to coordinate the efforts
of multiple pursuers, which is a considerable challenge
(finding the minimum number of pursuers is NP-hard
for the ideal information case in a polygonal environ-
ment [6]).

Acknowledgments

We are grateful for the funding provided in part
by NSF CAREER Award IRI-9875304 (LaValle) and
the NSF REU program. We thank Elon Rimon for an
encouraging discussion.

References

[1] M. A. Bender, A. Fernandez, D. Ron A. Sahai, and
S. Vadhan. The power of a pebble: Exploring and
mapping directed graphs. In Proc. Annual Symposium
on Foundations of Computer Science, 1998.

[2] M. Blum and D. Kozen. On the power of the com-
pass (or, why mazes are easier to search than graphs).
In Proc. Annual Symposium on Foundations of Com-
puter Science, pages 132-142, 1978.

[3] H. Choset and J. Burdick. Sensor based planning,
part I: The generalized Voronoi graph. In IEEE Int.
Conf. Robot. & Autom., pages 1649-1655, 1995.

[4] D. Crass, I. Suzuki, and M. Yamashita. Searching for
a mobile intruder in a corridor — the open edge variant
of the polygon search problem. Int. J. Comput. Geom.
& Appl., 5(4):397-412, 1995.

[5] A. Efrat, L. J. Guibas, D. C. Lin, J. S. B. Mitchell,
and T. M. Murali. Sweeping simple polygons with a
chain of guards. In Proc. ACM-SIAM Sympos. Dis-
crete Algorithms, 2000.

[6] L. J. Guibas, J.-C. Latombe, S. M. LaValle, D. Lin,
and R. Motwani. Visibility-based pursuit-evasion in a
polygonal environment. In F. Dehne, A. Rau-Chaplin,
J.-R. Sack, and R. Tamassia, editors, WADS ’97 Algo-
rithms and Data Structures (Lecture Notes in Com-
puter Science, 1272), pages 17-30. Springer-Verlag,
Berlin, 1997.

[7] 1. Kamon and E. Rivlin. Sensory-based motion plan-
ning with global proofs. IEEE Trans. Robot. & Au-
tom., 13(6):814-822, December 1997.

[8] I. Kamon, E. Rivlin, and E. Rimon. Range-sensor
based navigation in three dimensions. In IEEE Int.
Conf. Robot. € Autom., 1999.

[9] S. M. LaValle and J. Hinrichsen. Visibility-based
pursuit-evasion: An extension to curved environ-
ments. In Proc. IEEE Int’l Conf. on Robotics and
Automation, pages 1677-1682, 1999.

[10] S. M. LaValle, D. Lin, L. J. Guibas, J.-C. Latombe,
and R. Motwani. Finding an unpredictable target in
a workspace with obstacles. In Proc. IEEE Int’l Conf.
on Robotics and Automation, pages 737-742, 1997.

[11] J.-H. Lee, S. Y. Shin, and K.-Y. Chwa. Visibility-
based pursuit-evasions in a polygonal room with a
door. In ACM Symp. on Comp. Geom., 1999.

[12] V. J. Lumelsky and A. A. Stepanov. Path plan-
ning strategies for a point mobile automaton moving
amidst unknown obstacles of arbitrary shape. Algo-
rithmica, 2:403-430, 1987.

[13] M. S. Manasse, L. A. McGeoch, and D. D. Sleator.
Competitive algorithms for on-line problems. In Proc.
20th Annu. ACM Sympos. Theory Comput., pages
322-333, 1988.

[14] T.D. Parsons. Pursuit-evasion in a graph. In Y. Alavi
and D. R. Lick, editors, Theory and Application of
Graphs, pages 426—441. Springer-Verlag, Berlin, 1976.

[15] A. M. Shkel and V. J. Lumelsky. Incorporating body
dynamics into sensor-based motion planning: The
maximum turn strategy. IEEE Trans. Robot. & Au-
tom., 13(6):873-880, December 1997.

[16] B. Simov, G. Slutzki, and S. M. LaValle. Pursuit-
evasion using beam detection. In Proc. IEEE Int’l
Conf. on Robotics and Automation, 2000.

[17] I. Suzuki and M. Yamashita. Searching for a mobile
intruder in a polygonal region. SIAM J. Computing,
21(5):863-888, October 1992.

[18] M. Yamashita, H. Unemoto, I. Suzuki, and
T. Kameda. Searching for mobile intruders in a polyg-
onal region by a group of mobile searchers. Technical
Report TR-96-07-01, Dept. of Electrical Engineering
and Computer Science, University of Wisconsin - Mil-
waukee, July 1996.

