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Abstract

In this paper, we discuss the field of sampling-based
motion planning. In contrast to methods that con-
struct boundary representations of configuration space
obstacles, sampling-based methods use only information
from a collision detector as they search the configuration
space. The simplicity of this approach, along with in-
creases in computation power and the development of ef-
ficient collision detection algorithms, has resulted in the
introduction of a number of powerful motion planning
algorithms, capable of solving challenging problems with
many degrees of freedom. First, we trace how sampling-
based motion planning has developed. We then discuss
a variety of important issues for sampling-based motion
planning, including uniform and regular sampling, topo-
logical issues, and search philosophies. Finally, we ad-
dress important issues regarding the role of randomiza-
tion in sampling-based motion planning.

1 Introduction

In recent years, a number of motion planning algo-
rithms have been introduced which have had remark-
able success in solving challenging motion planning prob-
lems, including ones with many degrees of freedom
(DOFs). Examples include the Randomized Path Plan-
ner (RPP), Probabilistic Roadmap planners (PRMs),
Ariadne’s Clew, and Rapidly-exploring Random Trees
(RRTs). Each of these methods, and many others, can
be seen as belonging to a field we call sampling-based
motion planning. We believe a fundamental distinction
exists between sampling-based motion planners and ear-
lier planners that built explicit representations of the ob-
stacle boundary in the configuration space.

While the problem of motion planning has been rec-
ognized for many decades (e.g, Nilsson’s work in the late
1960s [56]), it can be argued that the epoch marking
the beginning of modern motion planning was the in-
troduction in 1979 of the idea of the configuration space
by Lozano-Pérez and Wesley [50]. In the configuration
space, the robot is reduced to a point; hence, the motion
planning problem becomes that of finding a path for a
point from an initial point to a goal point in the con-
figuration space. This contrasts with previous methods

which planned directly in the workspace, using methods
such as swept volumes to determine whether or not a
path was feasible (i.e., did not collide with an obstacle).
However, planning in C-space poses a problem: unlike
the obstacles in the workspace, which are well-defined,
how does one represent invalid configurations in C-space
(C-space obstacles1)? Lozano-Pérez and Wesley gave
methods for constructing representations of Cobs based
on contact conditions between the robot and the obsta-
cles, and their ideas formed the foundation for many mo-
tion planning algorithms in the decade to follow.

However, constructing explicit representations of Cobs

from the geometry of the problem has several disadvan-
tages. The first complete, general motion planning algo-
rithm, by Schwartz and Sharir, used cylindrical algebraic
decomposition, whose running time was doubly exponen-
tial in the degrees of freedom [62]. Canny introduced a
roadmap algorithm which improved this to “only” singly
exponential [17]. Both methods employ general-purpose
techniques from computational real algebraic geometry
[8], which are very difficult to implement correctly, es-
pecially due to numerical considerations. Furthermore,
the running times of these algorithms also grow quickly
with the number of primitives in the obstacle and robot
representations, as opposed to the true difficulty of a
particular motion planning task. Most realistic motion
planning models require thousands of primitives, which is
well beyond what can be handled by the motion planning
algorithms that work directly with algebraic constraints
on the obstacle region. In some special cases, efficient
combinatorial algorithms have been developed, but these
usually apply to low-dimensional C-spaces and/or simpli-
fied geometries. The PSPACE-hardness bound [61] pro-
vides further discouragement from attempting to develop
and use exact, combinatorial solutions, such as those in
[17, 62], to solve motion planning problems that have
many degrees of freedom and model primitives.

In light of these difficulties, sampling-based motion
planning has emerged over the past fifteen years as a way
to avoid explicit constructions of Cobs. By sampling, it is
hoped that many practical, high-dimensional problems

1The set of all invalid configurations is often denoted Cobs and

its complement, the set of all free configurations, as Cfree
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with complicated models can be solved efficiently. In-
stead of an explicit representation of Cobs, imagine that
one has access only to limited information about the
configuration space. For example, given a test config-
uration, suppose one can efficiently determine whether
the configuration lies in Cfree or Cobs. Alternatively, one
may have access to the distance (typically, Hausdorf dis-
tance) between the robot and the workspace obstacles
for a given configuration. This information is exactly
that which is provided by modern collision detection al-
gorithms. Hence, we define sampling-based motion plan-
ners as those whose only information about Cobs is ob-
tained by sampling C-space through a collision detector.

Sampling-based motion planning is thus fundamen-
tally different from earlier approaches to motion plan-
ning since its model of available information about C-
space is substantially restricted. This restriction elimi-
nates many of the problems encountered in methods that
constructed a representation of Cobs. Since there is no
explicit model of Cobs, there is no need to characterize
all possible contact conditions for particular classes of
problems, nor to compute the contacts to solve a given
problem. Also, a sampling-based motion planner can
apply to a broad class of motion planning problems be-
cause it treats collision detection as a separate module,
which may be tailored to a particular kind of problem.
For these reasons, sampling-motion planning algorithms
often seem strikingly simple in comparison to combina-
torial motion planners, such as Canny’s roadmap algo-
rithm. The simplicity and generality of these planners is
likely a significant factor contributing toward their suc-
cess and applicability to high-DOF problems.

2 The rise of sampling-based motion

planning

To fully understand the continuing evolution of
sampling-based motion planning and its current issues, it
is helpful to understand how sampling-based algorithms
have developed and changed over time. In this section,
we will describe how sampling-based algorithms began
to emerge, and how they have continued to develop up
to the present time.

In the 1980s, constructing a representation of Cobs,
either completely or in part, was the predominate ap-
proach to motion planning. Examples include the plan-
ner by Brooks and Lozano-Pérez for a polygon rotat-
ing and translating in the plane [15], work by Donald
for planning for a 3D rigid body [22, 23], and a plan-
ner by Lozano-Pérez for manipulator arms [49]. Ref-
erences to many combinatorial planners and a few early
sampling-based ones can be found in Hwang and Ahuja’s
survey [34]. Glimpses of sampling-based ideas can be
seen even in Donald’s work; he placed a six-dimensional
lattice over the configuration space and attempted to
find a connected sequence of lattice points. Lacking
the collision detection abstraction, however, he relied
on equations representing the Cobs boundaries during
the search process. Greater movement toward sampling-

based motion planning began in the late 1980s. Algo-
rithms in this direction typically centered around ad-
vances in efficient calculation of distance between poly-
hedra. Faverjon and Tournassoud introduced a manipu-
lator planner which computed local collision-free motions
using distance computation and hierarchical CAD mod-
els [25, 24]. The introduction of algorithms such as the
Gilbert-Johnson-Keerthi algorithm [29] made sampling-
based approaches more common. A good example of an
approach is the manipulator planner of Paden et al. [58].
They create a 2d-tree representation of the configuration
space, labelling cells as “freespace,” “obstacle,” or “not
sure or mixed.” To classify cells correctly (or at least,
conservatively), they find the uniform bound on the Ja-
cobian for the given manipulator. Then, based on this
information and the workspace distance returned by the
GJK algorithm, they can determine whether or not an
entire cell can be classified as freespace or obstacle. If
neither apply, then the cell is labelled mixed and will be
subdivided, if a predefined minimum resolution has not
yet been reached. After preprocessing the environment
in such a way, it is simple to find a path, if one exists
in the tree, or to determine that greater resolution is
required to resolve small mixed cells.

The use of distance information from a collision de-
tector permits hierarchical grid-based approaches as in
Paden et al., but computing this information is more
expensive than simply returning the boolean result of
an intersection test (the most basic form of collision de-
tection). A less-expensive grid-based approach might
discretize the space at a sufficiently fine resolution and
use an inexpensive collision detection method to deter-
mine whether each cell belongs to Cfree, thus creating a
bitmap of C-space. The resulting data structure can then
be searched by classical AI search techniques to find a
path, if one exists. In fact, this very approach was taken
by Lengyel et al. [45]. Their algorithm uses graphics
hardware to plan for a polygonal robot translating and
rotating in the plane. They divide the rotational degree
of freedom, θ, into a number of slices, and use graphics
hardware to calculate the Minkowski sum of the robot
and obstacles for a particular value of θ. They combine
all resulting slices and have a bitmap representation of
the three-dimensional C-space, which they then search
with a dynamic programming technique.

In general, however, this kind of approach is limited
to lower dimensions since the number of resultant grid
cells grows exponentially with the number of DOFs of
the problem, and the a fine resolution is required. Hence,
checking them all for collision becomes impractical. Nev-
ertheless, when general sampling-based motion planning
algorithms began to proliferate in the early 90’s, several
of these were clearly influenced by the grid search ap-
proach. We will consider two of this type, along with two
other early sampling-based algorithms, before describing
several more recent, state-of-the-art sampling-based mo-
tion planners.

One early planner that strongly reflects classical grid
search techniques is that of Kondo [41]. Kondo’s plan-
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ner is based on the observation that even if a fine grid
is placed over the configuration space, it may be pos-
sible to find a solution without visiting large portions
of that grid. Hence, if one delays collision checking un-
til needed–a “lazy” approach–only (relatively) few col-
lision checks will need to be performed, thus avoiding
the expensive preprocessing step of naive grid search.
The planner searches a grid bidirectionally, assigning
cost f(C) = g(C) + h(C) to each expanded grid cell,
in which g(C) is the standard cost-to-come and h(C) is
a heuristic weighted sum-of-squares cost. Kondo’s plan-
ner uses multiple heuristics (i.e., different assignments
of the heuristic weight constants), and adaptively selects
between them based on an estimate of their effectiveness.
Hence, the effectiveness of the planner strongly depends
on the quality of the heuristic functions, and on the plan-
ner’s ability to choose the appropriate one to apply. If
either of these are poor, then performance will degrade
greatly. Kondo gives several six-dimensional examples,
with the resolution of the grid being 27 points per axis
yielding 242 total grid cells. However, for the results re-
ported, typically less than 20000 collision checks were
needed to solve the problem. The influence of Kondo’s
multiple-heuristic approach can be seen in recent PRM-
related work by Isto [35].

In 1990, Barraquand and Latombe introduced the
planner that came to be called the Randomized Path
Planner [7]. This planner is important for three pri-
mary reasons: first, it was the perhaps the first well-
known sampling-based motion planner; second, it solved
problems with many DOFs, typically many more than
other planners at the time were capable of handling;
and third, it advocated randomization as a means of ef-
ficiently finding solutions in the high-dimensional con-
figuration space. Its influence in this third respect can
hardly be overestimated, since for the following decade
virtually every significant sampling-based motion plan-
ning algorithm used randomization. In fact, only re-
cently has the role of randomization in sampling-based
motion planning begun to be studied in depth. We will
discuss this issue in some depth in subsequent sections.
RPP operates as follows: first, the planner defines several
potential fields over a grid imposed on the workspace;
each potential field corresponds to a “control point” on
the robot. A finer-resolution grid is also defined over
the configuration space, and the potential value of each
configuration-space grid cell is defined by the following
non-negative, real-valued function on Cfree:

U(q) = G (Up1
(X(p1, q)), . . . , Upn

(X(pn, q))) ,

in which p1, . . . , pn are the control points, X is a func-
tion mapping a point on the the robot to its position
in the workspace at the given configuration, and G is
an arbitration function. Then, beginning at the initial
state, the planner descends the gradient of the C-space
potential field, until a local minimum is reached. If the
minimum is the global minimum, the goal state has been
attained; else, the planner executes a series of random
walks with the aim of escaping the local minimum. After

this, the planner again descends the potential field gradi-
ent, continuing this process until the goal state has been
reached or a user-specified amount of time has elapsed.
This latter condition is necessary because unlike combi-
natorial planners, sampling-based planners are typically
unable to recognize that a problem has no solution; in
such a situation, they will never terminate. The key to
this planner’s performance is the construction of good
potential fields and a good arbitration function, which
can be quite difficult to construct in practice. If the po-
tential fields result in many local minima, the planner
can perform poorly.

Another early sampling-based motion planner is the
SANDROS planner of Chen and Hwang [18], which was
developed for manipulator arms. This planner searches
in a multi-resolution manner over a non-uniform grid
(i.e., the resolution on the coordinate axes may differ).
The axes are given different resolutions because for ma-
nipulator arms, links near the base have the greatest
impact on end effector position. Just as Paden et al.,
this algorithm uses the GJK algorithm [29] for collision
detection. It also uses the distance information to place
links of the arm at maximal distance from the workspace
obstacles.

Finally, a planner (later termed the ZZ-method) was
introduced by Glavina in 1990 [30] which foreshadows
PRMs in many respects. The ZZ-method first attempts
to connect the initial and goal queries using a “straight-
and-slide” local planner (a method which does not allow
backtracking but is more powerful than the straight-line
local planner). If this fails, which is usually the case,
then a new configuration is chosen as a subgoal (Glav-
ina advocates using jittered sampling), and attempts to
connect the subgoal to the initial and goal configura-
tions using the same local planner. If this fails, new
subgoals are added and attempts are made to connect
them with previously existing subgoals, as well as the ini-
tial and goal configurations. Edges between subgoals are
checked for collisions at a pre-defined subsampling res-
olution. Glavina also identifies the well-known “narrow
corridor” problem and uses connected component anal-
ysis to speed up his planner. However, he uses a primi-
tive collision detection method which prevents him from
applying his algorithm to challenging, high-DOF prob-
lems (this was remedied in some extensions of his work
[4, 5]); also, the straight-and-slide local planner becomes
expensive in high dimensions. In principle, however, the
ZZ-method contains many elements which have become
common in more recent algorithms.

Since the introduction of these early algorithms,
sampling-based motion planning has continued to de-
velop. Changes have been made to deal with failings of
previous planners, and new exploration paradigms have
been investigated. We discuss four well-known recent
motion planning algorithms: PRMs, Ariadne’s Clew, the
expansive-space planner by Hsu et al., and RRTs.

In recent years, the most popular paradigm for
sampling-based motion planning has been the probabilis-
tic roadmap [38]. The original PRM, along with its nu-
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merous extensions and variants (e.g., [1, 11, 46, 60, 63,
69, 70]), have been successfully applied to problems in
robotics, computer animation, and computational biol-
ogy [40, 59, 65]. While there is a strong connection to
Glavina’s work, there are several important differences.
Foremost among these is that the PRM is designed for
multiple-queries rather than a single-query. Hence, the
placement of landmarks is seen as constructing a reusable
roadmap in the PRM method, not as generating query
subgoals as in the ZZ-method. Second, the ZZ-method
attempted to connect each new landmark (subgoal) to
all previous ones; PRMs attempt to connect to a more
carefully-chosen subset of these, which is typically the
K nearest landmarks from each connected component,
or all subgoals within some specified radius. Third,
the PRM uses a more simple local planner, often either
straight-line or rotate-at-s [3], unlike the ZZ-method’s
more expensive straight-and-slide local planner. Finally,
methods are used to identify difficult regions of C-space
and sample in those regions (the “roadmap enhance-
ment” phase). Along with the use of more sophisticated
collision detection methods, these factors make the PRM
more effective for challenging motion planning problems.

Ariadne’s Clew is a single-query algorithm that grows
a tree from the initial configuration toward the goal con-
figuration [52, 53]. At each step, it searches for a new
“landmark,” reachable from a current landmark by a
Manhattan path of a certain order, which is maximally
distant from the set of all current landmarks. They use
highly-parellelized genetic algorithms to search for a so-
lution to this optimization problem. Once a new land-
mark has been added to the tree, the planner attempts
to connect this new landmark to the goal. To improve
performance, when the algorithm encounters an obstacle
in trajectory calculation it “bounces” off it. Experimen-
tal results give fast solution times for motion of a 6-DOF
arm in a dynamic environment. One limitation, however,
is the difficult heuristic choices required for the genetic
algorithm.

Hsu et al. introduced a single-query path planner2 for
“expansive” configuration spaces in [33]. The notion of
expansiveness is related to how much of the free space is
visible from a single free configuration or connected set
of free configurations, and extends the idea of ε-goodness
[6]. The expansive-space planner grows a tree from the
initial configuration. Each node x in the tree has an as-
sociated weight, which is defined to be the number of
nodes inside Nd(x), the ball of radius d centered at x.
At each iteration, it picks a node to extend; the proba-
bility that a given node x will be selected is 1/w(x), in
which w is the weight function. Then, K points are sam-
pled from Nd(x) for the selected node x, and the weight
function value for each is calculated. Each new point
y is retained with probability 1/w(y), and the planner
attempts to connect each retained point to the node x.

2Some authors refer to this and virtually all planning algorithms

that use randomization as PRMs. To avoid confusion, we do not

use this term for single-query planners, such as the planner of Hsu

et al., even though it is called a PRM by its authors.

Hence, we see a similarity between this planner and Ari-
adne’s clew, in that they each try to “push” the tree to-
ward unexplored areas of free space. The main drawback
of the approach is that the required d and K parameters
may vary dramatically across problems, and they are dif-
ficult to estimate for a given problem.

Finally, we describe Rapidly-exploring Random Trees
(RRTs) [42, 44], which were developed for problems with
differential constraints, such as kinodynamic planning
and nonholonomic planning. Its introduction has stimu-
lated a flurry of recent applications and extensions (e.g.,
[13, 16, 19, 20, 21, 27, 36, 37, 39, 47, 67, 70]). In its
basic form, the RRT attempts to grow a tree from the
initial configuration to the goal configuration as follows:
take a random sample, and find its nearest neighbor in
the search tree. Then, grow toward the sample from
its nearest neighbor. This process is repeated until the
initial and goal configurations are connected. The best-
performing RRT planner uses a more greedy connection
strategy (at each iteration, attempt to make a complete
connection from the nearest neighbor to the sample) and
searches bidirectionally. This planner rapidly explores
the configuration space because it is Voronoi-biased: at
each iteration it tends to grow from the node with the
largest Voronoi area. This is because the probability
that a node is selected for expansion is directly propor-
tional to the volume of its Voronoi cell. In contrast to
Ariadne’s Clew and the expansive-space planner, which
work hard to push the tree toward unexplored regions,
RRTs are pulled into these regions by virtue of the sam-
pling and connection strategy. This avoids the need for
complicated parameter tuning, but comes at the expense
of performing nearest neighbor queries.

3 Uniform sampling issues

All of the recent methods from Section 2 rely on
some method for generating samples over the configu-
ration space. This section covers ways to sample uni-
formly, which applies many methods, including the ZZ-
method, PRMs and RRTs. Others, such as RPP and the
expansive-space planner, sample uniformly over neigh-
borhoods of certain points. Typically, the samples are
taken at random from a statistically uniform distribu-
tion; however, this method of sampling is not as uniform
as some deterministic methods. Several weaknesses of
random sampling were shown in the context of the PRM
in [14, 28, 43]. One problem is that it is not optimal with
respect to rigorous criteria, such as those introduced in
Section 3.1. In this section we discuss some of these gen-
eral issues, and defer discussion of non-uniform sampling
(or importance sampling) until Section 4.1.

3.1 Sampling criteria

A very brief overview is given here; more details
and references appear in [43]. Motivated by applica-
tions in numerical integration and optimization, the most
common criteria are discrepancy and dispersion. Let
X = [0, 1]d ⊂ Rd define a space over which to generate
samples. Consider evaluating the uniformity of a set, P ,
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of N d-dimensional sample points {p0, . . . , pN−1}. The
discrepancy is defined as

D(P,R) = sup
R∈R

|µ(R)− |P ∩R|/N | (1)

in which | · | of a set denotes its cardinality, µ denotes
the Lebesgue measure, and R is a range space, which
will be taken by default in this paper to be the set of all
axis-aligned rectangular subsets of X. The dispersion is
defined as

δ(P, ρ) = sup
x∈X

min
p∈P

ρ(x, p), (2)

in which ρ denotes any metric; unless otherwise stated,
the default metric in this paper will be `∞. Dispersion
can also be considered as the “radius” of the largest
empty ρ-ball, among all balls whose centers lie in X.
Both discrepancy and dispersion seem very relevant in
the PRM context because range queries are repeatedly
performed, and these criteria ensure that either the ap-
propriate number of samples (discrepancy) or at least
one sample (dispersion) will fall within a range.

A low-discrepancy point set or sequence is one that
yields the best-possible asymptotic discrepancy, which is
O(N−1 logd N) for infinite sequences and

O(N−1 logd−1 N) for finite point sets. The simplest
low-discrepancy point sets and sequences are Hammer-
sley and Halton points, respectively, which were ap-
plied to motion planning in [14]. Other low-discrepancy
techniques exist that produce smaller constants in the
asymptotic convergence rate. The best family of meth-
ods are the (t,m,s)-nets and (t,s)-sequences [54], and the
current best within this family are the Niederreiter-Xing
sequences [55].

Regarding `∞ dispersion, the Sukharev sampling cri-
terion [66] states that for any point set P , δ(P ) ≥
1

2
bN

1
d c. Thus, to keep dispersion fixed, it is impossi-

ble to avoid exponentially-many samples in dimension.
A low-dispersion point set or sequence is one that pro-
duces the best possible asymptotic dispersion, which is
O(N−1/d). For a fixed N , if N

1
d is an integer, k, the

Sukharev grid yields the best possible dispersion, which
is precisely 1

2
N−1/d. In this case, the grid is constructed

by partitioning [0, 1]d into N cubes of width 1/k so that a
tiling of k×k×· · ·×k is obtained, and a sample is placed
at the center of each cube. Nongrid, low-dispersion infi-
nite sequences exist that have 1

ln 4
as the constant in the

asymptotic convergence rate [54].

If a sample sequence is used that has a tight upper
bound on dispersion, resolution completeness guaran-
tees can be made on most sampling-based planning algo-
rithms, expressed in terms of corridor width [43]. Using
a random sequence, one typically bounds expected per-
formance or constructs high-probability bounds [6]. It
is possible, however, to provide both kind of bounds, if
desired, by randomizing low-dispersion sequences.

3.2 Lattices and other regular structures

Regular structures often have desirable uniformity
characteristics. For example, the Sukharev grid is opti-
mal for `∞-dispersion [66], and low-discrepancy lattices
have been a subject of interest in the sampling commu-
nity for some time [64]. In addition to good uniformity,
regular sampling can have additional benefits. For ex-
ample, regular structures have an implicit neighborhood
structure: given a vertex in the structure, one may eas-
ily find its neighbors. Additionally, regular structures
often admit hierarchical or multi-resolution representa-
tions, which can also be used advantageously for plan-
ning purposes (e.g., Paden et al. [58]). However, regu-
lar structures suffer from two problems: first, they are
point sets, not point sequences; and second, they are
axis-aligned. We discuss each of these in turn.

Point sets of a fixed size are generally unsuitable for
motion planning purposes becuase one cannot determine
a priori how many samples will be necessary to solve the
problem (and hence how large the point set needs to be).
Hence, regular structures seem to be at a disadvantage
as opposed to infinite sequences such as Halton points
or uniform random samples. However, it is possible to
construct infinite sequences based on regular structures,
which incrementally enhance their resolution. Sequences
of this type periodically look like the point sets they
are based on (at particular resolution levels), and grad-
ually “fill in the gaps” between one resolution level and
the next. The foremost requirement of sequences of this
type is that it have incremental quality. This means
that after every sample (or, perhaps, each small set of
samples) the sequence should be as uniform as possible.
Secondarily, these sequences should be easy to gener-
ate and allow easy neighbor-finding, to fully exploit the
advantages of regular structures. Examples of infinite
sequences based on regular structures include the exten-
sible grid sequence of the authors [48] and the extensible
low-discrepancy lattices of Hickernell et al. [31]. The
derandomized version of the Lazy PRM (see [11]) also
progressively increases the resolution of the grid used to
build the roadmap [10]. Rather than adding points one
at a time as in the previous methods, Bohlin adds an
entire hyperplane of samples, chosen to fill the largest
gap present in the existing grid.

By their nature, regular structures are axis-aligned.
In the case of grids, the structures are aligned with
the coordinate axes; other regular structures have align-
ments on other axes. The effect of this on motion plan-
ning algorithms should be understood. To date, only lim-
ited efforts have been undertaken to examine the effect
of these axis alignments [43]. It may be observed from
the outset that the effect of axis alignments is greatest
when Cobs also has axis alignments. While this should
not be the case in general, it often happens when the
workspace environment is human-designed. When this
is the case, small changes in workspace obstacle position
can move an entire hyperplane of samples from Cfree

to Cobs, greatly increasing the number of samples re-
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quired to solve the problem and thus its (apparent) dif-
ficulty. This is undesirable, since it is intuitively clear
that, in general, changing the workspace slightly should
not greatly change the difficulty of the problem. Several
comments on this front can be made. First, it has already
been noted that this problem is more practical than the-
oretical, since it probably occurs most often when the
workspace is human-designed. Second, axis alignments
may help for some problems, and hurt for others. Thus,
axis alignments may not be bad in an absolute sense
(such as increasing execution time across the board),
but may simply result in higher “variance” in execution
times across a set of similar problems. Third, it may be
possible to reduce this variance through limited use of
randomization (e.g., choosing a random start index for
the sample sequence from a set of possibilities).

3.3 Topological considerations

In the discussion so far, little attention has been given
to the interaction between topology and sampling issues.
For example, most QMC literature is dedicated to sam-
pling in an n-dimensional cube, which does not reflect the
topology of most configuration spaces. Special concern
must be given for samples near the boundary of the cube,
but if all robot motions are obtained from 360◦ revo-
lute joints, the configuration space is a manifold without
boundary (i.e., a torus). A sampling technique that was
optimized for a cube might perform well on a torus, but
better techniques might still exist because the bound-
ary effects are different. This becomes very important
in high dimensions. For example, for a lattice, there will
be very few points per axis. It would be unfortunate to
place points close to what would be the boundary of the
cube, when in fact the opposite faces are identified, and
there is no boundary.

It is also important to note that sampling issues are
affected by the particular parameterization used to rep-
resent the C-space. A homeomorphism can always be
introduced that “enlarges” one part of the space, while
“shrinking” others. Thus, which parameterization would
accurately preserve the notion of uniformity? In many
cases, an intrinsic notion of uniformity exists. For any
locally compact topological group, there exists a unique
(up to scale) measure, called the Haar measure, that is
invariant with respect to group actions [26]. For SO(2),
this is achieved by standard Lebesque measure on the
interval [0, 2π). For SO(3) this is obtained by defining
a uniform density function over the upper half of the
unit sphere, S3 ⊂ R4, which corresponds to the set of
unit quaternions in which the first coordinate is posi-
tive. Thus, for uniform, random sampling, it is best
to generate samples uniformly on S3. Optimal disper-
sion sampling, however, remains a challenging problem
for SO(3) and other transformation groups that arise in
motion planning.

In addition to uniformly sampling the entire config-
uration space, operations are frequently used which re-
quire uniformity over local directions or neighborhoods,
which yields new topologies. For example, Barraquand

and Latombe sample the n-neighbors of the current grid
cell for the purposes of gradient descent. Glavina chooses
several direction vectors to use in the straight-and-slide
local planning method. Wilmarth et al. choose k di-
rections in which to try to push a sample toward the
medial axis of free space. In the same way as in the gen-
eral case, it is possible to obtain more uniform results
with deterministic techniques than with simple random
ones. For example, one may precompute k points placed
with high or optimal uniformity on Sd−1, corresponding
to direction vectors in d-dimensional space. It would re-
quire some work to compute these vectors for different
values of d and k, and to do so is non-trivial; however,
these only need to be computed a single time, and can
then be stored for later use. To use the computed sample
sets, one need only apply a rotation to each one to elimi-
nate bias, possibly selected at random or from a uniform
deterministic sequence.

4 Search and exploration issues

Complementary to uniform sampling is the problem of
how to explore the configuration space, which determines
the way in which samples are used. We discuss several
issues related to search in this section.

4.1 Non-uniform sampling

Having discussed some of the issues related to uniform
sampling, we have argued that deterministic techniques
may be beneficial compared to the randomized meth-
ods which have thus far dominated sampling-based mo-
tion planning. However, it is much more challenging to
address these issues in the context of non-uniform sam-
pling. The primary motivation for non-uniform sampling
is simple: if it is possible to determine that certain re-
gions of the configuration space are more important than
others, then one would like to be able to sample these
at a higher density, as efficiently as possible. The im-
portance of generating samples around narrow corridors
was recognized in [2, 30, 32].

In general, there are two approaches to non-uniform
sampling: importance sampling (a priori non-uniform
sampling) and adaptive sampling. Importance sampling
is based on the prior belief that solutions will be found
more quickly by concentrating sampling in certain areas
of C-space. Importance sampling has played a signifi-
cant role in recent PRM literature; a simple example is
the technique of goal-biased sampling [65], in which sam-
ples are drawn from Gaussian distributions centered at
the goal configurations in addition to some uniform sam-
pling. Other examples of importance sampling used in
PRMs include obstacle-based sampling, in which samples
are taken from the boundary of Cobs [1], medial-axis sam-
pling, in which samples are taken from the medial axis of
Cfree [69], and Gaussian sampling, in which sampling is
biased to be near C-space obstacles [12]. Given the lim-
ited information about C-space to which sampling-based
planners have access, it is not immediately clear how to
sample this way. The way this problem has been dealt
with is to draw samples uniformly from the configuration
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space, and then apply a transformation or rejection rule
to them to achieve the desired distribution. We define a
transformation rule as a rule which takes uniform sam-
ples and transforms them to have the desired characteris-
tics. Medial-axis sampling implements a transformation
rule, and obstacle-based sampling can be implemented
in this way as well.

The other category of non-uniform sampling is adap-
tive sampling. In this technique, the distribution from
which new samples are drawn is modified based on in-
formation gained from previous samples. An example
of adaptive sampling is the Visibility PRM [63]. This
algorithm adapts its sampling-based on the visibility re-
gions of the different connected components of the com-
puted roadmap. By sampling only in unexplored regions
(in the visibility region of no component) and in regions
where connections between different components can be
made (in the visibility region of more than one compo-
nent), good exploration can be achieved without creating
large numbers of nodes in the roadmap (as in most PRM
methods). However, since no explicit information about
the visibility regions is available to the planner, it takes
samples uniformly from the configuration space and ap-
plies a rejection rule to them. A sample is accepted if it
satisfies one of the criteria given above, and rejected if it
does not.

As we have seen, both importance and adaptive sam-
pling techniques often implicitly depend on uniform sam-
pling, due to the lack of C-space information inherent
in the sampling-based approach. Hence, utilizing high-
quality uniform sampling techniques (including deter-
ministic ones) is not only important in a general sense,
but also impacts algorithms whose performance hinges
on non-uniform sampling.

4.2 Single-query vs. multiple-query

An important distinction between single-query and
multiple-query planning was made in [38]. For earlier
sampling based methods, such as the ZZ-method, Ari-
adne’s clew, or RPP, searching for the solution to a query
was the main focus. The PRM was introduced as a pre-
computed structure that could be used to quickly answer
many queries for the same set of obstacles. The combi-
natorial methods, such as Canny’s roadmap or cylindri-
cal algebraic decomposition, also follow this philosophy
because the searching part is straightforward, once sub-
stantial effort has been invested in building a roadmap
that captures the connectivity of Cfree. Many recent
sampling-based planning works, including the RRT and
the expansive C-space planner, have returned to the sin-
gle query model, particularly for the most challenging
problems. A single-query version of the PRM was even
introduced in [11]. Efforts have also been made to build
multiple-query data structures using single-query primi-
tives [9].

There are tradeoffs between investing substantial time
in precomputation vs. immediately attempting to solve
a query. The investment is worthwhile only if the partic-
ular application yields numerous planning queries for the

same environment. One important middle ground that
deserves more research attention is how to incrementally
build a data structure that becomes faster as more and
more queries are given. Initially, a single query approach
could be used, and then some part of the search struc-
ture is saved for future use. As more queries are given,
the structure could be updated. After numerous queries,
it would be ideal if the structure has properties like the
Visibility PRM: very few nodes, but most future queries
can be answered very quickly.

4.3 Information model

One interesting concept that has involved through-
out sampling-based planning is the model of information
that is available to a planner. Initially, planners worked
directly with C-space constraints. As collision detections
algorithms became more powerful, planners were given
less access to information regarding the constraints. A
collision detector essentially serve as a “black box” that
reports collision or possibly yields distance information.
This has greatly helped the development of sampling-
based planners that can be applied to a broad class of
problems. However, in many instances, it may be pos-
sible to improve performance by carefully investigating
the constraints that arise for particular problems once
again. It may be possible to optimize performance of
some of the sampling-based planners in particular con-
texts by carefully considering what information is avail-
able directly from the C-space constraints. This would
make an interesting direction explore in future research.

4.4 Simplicity and use of heuristics

One welcome trend in sampling-based planning has
been a reduction of heuristic parameters that require
tuning. In spite of the success of RRP and other earlier
planners, many of their ideas were abandoned in recent
research because of this difficulty. The original PRM,
and some of its variants, such as the Visibility PRM,
have become very popular because predictable perfor-
mance is obtained with little parameter tuning. The
main problematic parameter with the PRM is the con-
nection radius (aside from heuristics involved in node
enhancement). The RRT has achieved success in recent
years because there are no parameters that require tun-
ing for standard path planning (there are metric issues
when differential constraints exist), except the collision
detection frequency, which is required of all sampling-
based algorithms. As more methods are developed, it
is hoped that the dependency of solutions on particular
parameter settings will be minimized.

5 The value of randomization?

To one degree or another, randomization has been
ubiquitous in the field of sampling-based motion plan-
ning since Barraquand and Latombe’s work on the RPP.
They cite successful applications of randomization to
NP-hard problems as motivation for their use of ran-
domization as a tool for motion planning, and in turn
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their planner is highly randomized. Other planners are
randomized only through their use of a random sample
sequence (e.g., PRMs, RRTs). Since randomized plan-
ners have exhibited great success in solving challenging
motion planning problems, it is tempting to attribute
this success to the “power of randomization.” However,
little work has been done to carefully articulate the ben-
efits of various uses of randomization in sampling-based
motion planning algorithms. We believe that these is-
sues deserve careful study, and doing so will greatly con-
tribute to depth of understanding of sampling-based mo-
tion planning in general.

An inescapable feature of randomized algorithms is
their lack of repeatability: no two runs will execute iden-
tically. In motion planning, this has both positive and
negative implications. It is positive in that sometimes
the randomized algorithm will be “lucky” and solve a
problem very quickly. Hence, if it takes a long time to
solve a particular problem, there is hope that it will do
better next time; for a deterministic algorithm, this is not
the case. If a deterministic algorithm performs poorly
once, it will always perform poorly for that problem. On
the other hand, the lack of repeatability caused by ran-
domization can easily obscure how well the algorithm
performs and can cause flaws to be overlooked. In our
experience, flaws in deterministic algorithms often can
be discovered quickly because a single execution may be
enough to reveal them. Hence, working with determin-
istic algorithms can result in greater carefulness in both
algorithm design and implementation. Also, greater un-
derstanding of high-level algorithmic operation is possi-
ble since there is no random noise in its performance and
operation.

A disadvantage of deterministic sampling and the de-
sign of deterministic algorithms is that more caution
must be exercised to ensure correct behavior. For ex-
ample, the fact that deterministic samples are correlated
requires that extra attention be paid to how these sam-
ples are used. Strange results can occur when patterns
in the deterministic sequence interact with the behav-
ior of the algorithm3. As a simple example, consider a
bidirectional RRT which alternates between growing the
two search trees, using Halton points as the input sam-
ple sequence. In their typical construction, every even-
indexed Halton point has its first coordinate < 1/2, and
every odd-indexed one ≥ 1/2; hence, one search tree will
always remain in one half of the space, and the second
tree in the other half. This is clearly undesirable. This
can be fixed with little difficulty; either each tree can
use its own sample sequence or one can use a base other
than 2 for the first coordinate. Related to this is the
observation that one never needs more than one random
sample source to supply random numbers to an algo-
rithm. Since each sample is uncorrelated, different por-
tions of the algorithm can all draw random samples from
the same place. In the case of deterministic samples, dif-

3Note that the same difficulty sometimes occurs with pseudo-

random numbers, which are used instead of truly random numbers.

ferent parts of the algorithm need to instantiate their
own deterministic sample generators, to avoid interfer-
ence with one another and to ensure that the sampling
for each one truly is uniform.

The best approach may be to use randomized versions
uniform point sequences discussed in Section 3. These
sequences combine some of the benefits of both deter-
ministic and random sampling, and allow both deter-
ministic and randomized performance guarantees. Sev-
eral different randomized Halton sequences are possible:
one may choose a random shift vector to add to each
point, one may use random digit-scrambling techniques
[51], or the easily-generated “random-start” Halton se-
quence by Wang and Hickernell [68]. These sequences
all have the uniformity properties of the deterministic
Halton sequence, but are randomized as well. Similarly,
(t,m, s)-nets and (t, s)-sequences can also be randomized
[57]. Several types of random digit scrambling methods
are effective; some are fairly inexpensive, and others are
more costly to compute.

It has been seen that there are benefits to be gained
from examining deterministic alternatives to the ran-
domized approaches so prevalent in sampling-based mo-
tion planning. We believe that the achievements of
sampling-based motion planning algorithms over earlier
combinatorial ones are primarily due to the fact that the
are sampling-based, not due to the fact that they are
usually randomized (which we regard as partly inciden-
tal). In fact, the emphasis on and use of randomization
may have resulted in less understanding of key issues
in motion planning and search. Hence, we believe that
new advances in motion planning will occur as a result of
careful study of these issues, not through creative uses of
randomization. However, there are genuine advantages
to some forms of randomization, and these should be
embraced. It is possible to design good search method-
ologies with limited and appropriate randomization.

6 Conclusion

In conclusion, we have overviewed the field of
sampling-based motion planning. We have defined
sampling-based motion planning and given an overview
of its history. We have also discussed key sampling is-
sues for these motion planners, and mentioned areas for
future research. We believe that the key to the suc-
cess of contemporary motion planning algorithms is not
through randomization or clever heuristics. Rather, it is
the fact that these algorithms are sampling-based, conse-
quently avoiding the complexities of building Cobs repre-
sentations, which many earlier planners were faced with.
This enabled general-purpose planning algorithm to be
developed, while relegating the problem-specific difficul-
ties of analyzing Cobs to collision detection algorithms.
In future research, it might be beneficial to investigate
ways to improve recent sampling-based planning algo-
rithms in particular contexts by once again considering
the interaction between the obstacle constraints and the
planning algorithm.
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